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Preface
The study of computer science should cover not only the principles on which computational 
processing is based, but should also reflect the current state of knowledge of these fields. 
Today, the technology requires that professionals from all branches of computer science know 
both the software and hardware whose interaction at all levels is the key to understanding the 
basics of computational processing.

For this reason, in this book, a special focus is given on the relationship between hardware 
architectures and software.

Until recently, programmers could rely on the work of the hardware designers, compilers,  
and chip manufacturers to make their software programs faster or more efficient without  
the need for changes.

This era is over. So now, if a program is to run faster, it must become a parallel program.

Although the goal of many researchers is to ensure that programmers are not aware of the 
parallel nature of the hardware for which they write their programs, it will take many years 
before this actually becomes possible. Nowadays, most programmers need to thoroughly 
understand the link between hardware and software so that the programs can be run 
efficiently on modern computer architectures.

To introduce the concepts of parallel programming, the Python programming language has 
been adopted. Python is fun and easy to use, and its popularity has grown steadily in recent 
years. Python was developed more than 10 years ago by Guido van Rossum, who derived 
Python's syntax simplicity and ease of use largely from ABC, which is a teaching language  
that was developed in the 80s.
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In addition to this specific context, Python was created to solve real-life problems, and it 
borrows a wide variety of typical characteristics of programming languages, such as C ++, 
Java, and Scheme. This is one of its most remarkable features, which has led to its broad 
appeal among professional software developers, the scientific research industry, and 
computer science educators. One of the reasons why Python is liked so much is because 
it provides the best balance between the practical and conceptual approaches. It is an 
interpreted language, so you can start doing things immediately without getting lost in the 
problems of compilation and linking. Python also provides an extensive software library that 
can be used in all sorts of tasks ranging from the Web, graphics, and of course, parallel 
computing. This practical aspect is a great way to engage readers and allow them to carry out 
projects that are important in this book.

This book contains a wide variety of examples that are inspired by many situations, and 
these offer you the opportunity to solve real-life problems. This book examines the principles 
of software design for parallel architectures, insisting on the importance of clarity of the 
programs and avoiding the use of complex terminology in favor of clear and direct examples. 
Each topic is presented as part of a complete, working Python program, which is followed by 
the output of the program in question.

The modular organization of the various chapters provides a proven path to move from the 
simplest arguments to the most advanced ones, but this is also suitable for those who only 
want to learn a few specific issues.

I hope that the settings and content of this book are able to provide you with a useful 
contribution for your better understanding and dissemination of parallel programming 
techniques.

What this book covers
Chapter 1, Getting Started with Parallel Computing and Python, gives you an overview of 
parallel programming architectures and programming models. This chapter introduces the 
Python programming language, the characteristics of the language, its ease of use and 
learning, extensibility, and richness of software libraries and applications. It also shows 
you how to make Python a valuable tool for any application, and also, of course, for parallel 
computing.

Chapter 2, Thread-based Parallelism, discusses thread parallelism using the threading Python 
module. Through complete programming examples, you will learn how to synchronize and 
manipulate threads to implement your multithreading applications.

Chapter 3, Process-based Parallelism, will guide through the process-based approach 
to parallelize a program. A complete set of examples will show you how to use the 
multiprocessing Python module. Also, this chapter will explain how to perform communication 
through processes, using the message passing parallel programming paradigm via the mpi4py 
Python module.
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Chapter 4, Asynchronous Programming, explains the asynchronous model for concurrent 
programming. In some ways, it is simpler than the threaded one because there is a single 
instruction stream and tasks explicitly relinquish control instead of being suspended 
arbitrarily. This chapter will show you how to use the Python asyncio module to organize each 
task as a sequence of smaller steps that must be executed in an asynchronous manner.

Chapter 5, Distributed Python, introduces you to distributed computing. It is the process of 
aggregating several computing units logically and may even be geographically distributed 
to collaboratively run a single computational task in a transparent and coherent way. This 
chapter will present some of the solutions proposed by Python for the implementation of 
these architectures using the OO approach, Celery, SCOOP, and remote procedure calls, such 
as Pyro4 and RPyC. It will also include different approaches, such as PyCSP, and finally, Disco, 
which is the Python version of the MapReduce algorithm.

Chapter 6, GPU Programming with Python, describes the modern Graphics Processing 
Units (GPUs) that provide breakthrough performance for numerical computing at the cost of 
increased programming complexity. In fact, the programming models for GPUs require the 
programmer to manually manage the data transfer between a CPU and GPU. This chapter will 
teach you, through the programming examples and use cases, how to exploit the computing 
power provided by the GPU cards, using the powerful Python modules: PyCUDA, NumbaPro, 
and PyOpenlCL.

What you need for this book
All the examples of this book can be tested in a Windows 7 32-bit machine. Also, a Linux 
environment will be useful.

The Python versions needed to run the examples are:

ff Python 3.3 (for the first five chapters)

ff Python 2.7 (only for Chapter 6, GPU Programming with Python)

The following modules (all of which are freely downloadable) are required:

ff mpich-3.1.4

ff pip 6.1.1

ff mpi4py1.3.1

ff asyncio 3.4.3

ff Celery 3.1.18

ff Numpy 1.9.2

ff Flower 0.8.32 (optional)

ff SCOOP 0.7.2
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ff Pyro 4.4.36

ff PyCSP 0.9.0

ff DISCO 0.5.2

ff RPyC 3.3.0

ff PyCUDA 2015.1.2

ff CUDA Toolkit 4.2.9 (at least)

ff NVIDIA GPU SDK 4.2.9 (at least)

ff NVIDIA GPU driver

ff Microsoft Visual Studio 2008 C++ Express Edition (at least)

ff Anaconda Python Distribution

ff NumbaPro compiler

ff PyOpenCL 2015.1

ff Win32 OpenCL Driver 15.1 (at least)

Who this book is for
This book is intended for software developers who want to use parallel programming 
techniques to write powerful and efficient code. After reading this book, you will be able to 
master the basics and the advanced features of parallel computing. The Python programming 
language is easy to use and allows nonexperts to deal with and easily understand the topics 
exposed in this book.

Sections
This book contains the following sections:

Getting ready
This section tells us what to expect in the recipe and describes how to set up any software or 
any preliminary settings needed for the recipe.

How to do it…
This section characterizes the steps that are to be followed to "cook" the recipe.
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How it works…
This section usually consists a brief and detailed explanation of what happened in the 
previous section.

There's more…
This section consists of additional information about the recipe in order to make the reader 
more anxious about the recipe.

See also
This section may contain references to the recipe.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of 
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "To execute 
this first example, we need the program helloPythonWithThreads.py."

A block of code is set as follows:

print ("Hello Python Parallel Cookbook!!")

closeInput = raw_input("Press ENTER to exit")

print "Closing calledProcess"

When we wish to draw your attention to a particular part of a code block, the relevant lines or 
items are set in bold:

@asyncio.coroutine
def factorial(number):
do Something

@asyncio.coroutine

Any command-line input or output is written as follows:

C:\>mpiexec -n 4 python virtualTopology.py
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New terms and important words are shown in bold. Words that you see on the screen, in 
menus or dialog boxes for example, appear in the text like this: "Open an admin Command 
Prompt by right-clicking on the command prompt icon and select Run as administrator."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this  
book—what you liked or may have disliked. Reader feedback is important for us to develop 
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and 
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or 
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to 
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your 
account at http://www.packtpub.com. If you purchased this book elsewhere, you can 
visit http://www.packtpub.com/support and register to have the files e-mailed directly 
to you.

www.packtpub.com/authors
http://www.packtpub.com/support
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Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do 
happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—
we would be grateful if you would report this to us. By doing so, you can save other readers 
from frustration and help us improve subsequent versions of this book. If you find any errata, 
please report them by visiting http://www.packtpub.com/submit-errata, selecting 
your book, clicking on the errata submission form link, and entering the details of your 
errata. Once your errata are verified, your submission will be accepted and the errata will 
be uploaded on our website, or added to any list of existing errata, under the Errata section 
of that title. Any existing errata can be viewed by selecting your title from http://www.
packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt, 
we take the protection of our copyright and licenses very seriously. If you come across any 
illegal copies of our works, in any form, on the Internet, please provide us with the location 
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated 
material.

We appreciate your help in protecting our authors, and our ability to bring you valuable 
content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any 
aspect of the book, and we will do our best to address it.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
http://www.packtpub.com/support
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1
Getting Started with 

Parallel Computing  
and Python

In this chapter, we will cover the following recipes:

ff What is parallel computing?

ff The parallel computing memory architecture

ff Memory organization

ff Parallel programming models

ff How to design a parallel program

ff How to evaluate the performance of a parallel program

ff Introducing Python

ff Python in a parallel world

ff Introducing processes and threads

ff Start working with processes and Python

ff Start working with threads and Python
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Introduction
This chapter gives you an overview of parallel programming architectures and programming 
models. These concepts are useful for inexperienced programmers who have approached 
parallel programming techniques for the first time. This chapter can be a basic reference 
for the experienced programmers. The dual characterization of parallel systems is also 
presented in this chapter. The first characterization is based on the architecture of the 
system and the second characterization is based on parallel programming paradigms. 
Parallel programming will always be a challenge for programmers. This programming-based 
approach is further described in this chapter, when we present the design procedure of a 
parallel program. The chapter ends with a brief introduction of the Python programming 
language. The characteristics of the language, ease of use and learning, and extensibility 
and richness of software libraries and applications make Python a valuable tool for any 
application and also, of course, for parallel computing. In the final part of the chapter, the 
concepts of threads and processes are introduced in relation to their use in the language. 
A typical way to solve a problem of a large-size is to divide it into smaller and independent 
parts in order to solve all the pieces simultaneously. A parallel program is intended for a 
program that uses this approach, that is, the use of multiple processors working together 
on a common task. Each processor works on its section (the independent part) of the 
problem. Furthermore, a data information exchange between processors could take place 
during the computation. Nowadays, many software applications require more computing 
power. One way to achieve this is to increase the clock speed of the processor or to increase 
the number of processing cores on the chip. Improving the clock speed increases the heat 
dissipation, thereby decreasing the performance per watt and moreover, this requires special 
equipment for cooling. Increasing the number of cores seems to be a feasible solution, as 
power consumption and dissipation are way under the limit and there is no significant gain in 
performance.

To address this problem, computer hardware vendors decided to adopt multi-core 
architectures, which are single chips that contain two or more processors (cores). On the 
other hand, the GPU manufactures also introduced hardware architectures based on multiple 
computing cores. In fact, today's computers are almost always present in multiple and 
heterogeneous computing units, each formed by a variable number of cores, for example, the 
most common multi-core architectures.

Therefore, it became essential for us to take advantage of the computational resources 
available, to adopt programming paradigms, techniques, and instruments of parallel 
computing.
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The parallel computing memory architecture
Based on the number of instructions and data that can be processed simultaneously, 
computer systems are classified into four categories:

ff Single instruction, single data (SISD)

ff Single instruction, multiple data (SIMD)

ff Multiple instruction, single data (MISD)

ff Multiple instruction, multiple data (MIMD)

This classification is known as Flynn's taxonomy.

SISD

Single Instruction
Single Data

SIMD

Single Instruction
Multiple Data

MISD

Multiple Instructions
Single Data

Multiple Instructions
Multiple Data

SISD
The SISD computing system is a uniprocessor machine. It executes a single instruction that 
operates on a single data stream. In SISD, machine instructions are processed sequentially.

In a clock cycle, the CPU executes the following operations:

ff Fetch: The CPU fetches the data and instructions from a memory area, which is 
called a register.

ff Decode: The CPU decodes the instructions.

ff Execute: The instruction is carried out on the data. The result of the operation is 
stored in another register.
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Once the execution stage is complete, the CPU sets itself to begin another CPU cycle.

Control Processor MemoryInstruction Data

The SISD architecture schema

The algorithms that run on these types of computers are sequential (or serial), since they  
do not contain any parallelism. Examples of SISD computers are hardware systems with  
a single CPU.

The main elements of these architectures (Von Neumann architectures) are:

ff Central memory unit: This is used to store both instructions and program data

ff CPU: This is used to get the instruction and/or data from the memory unit, which 
decodes the instructions and sequentially implements them

ff The I/O system: This refers to the input data and output data of the program

The conventional single processor computers are classified as SISD systems. The following 
figure specifically shows which areas of a CPU are used in the stages of fetch, decode, and 
execute:

Fetch Decode Execute

Arithmetic Logic
Unit

Registers

Control Unit

Decode Unit

Bus Unit
Data

Cache

Instruction

Cache

CPU's components in the fetch-decode-execute phase
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MISD
In this model, n processors, each with their own control unit, share a single memory unit. 
In each clock cycle, the data received from the memory is processed by all processors 
simultaneously, each in accordance with the instructions received from its control unit. In 
this case, the parallelism (instruction-level parallelism) is obtained by performing several 
operations on the same piece of data. The types of problems that can be solved efficiently 
in these architectures are rather special, such as those regarding data encryption; for this 
reason, the computer MISD did not find space in the commercial sector. MISD computers are 
more of an intellectual exercise than a practical configuration.

Control 1

Control 2

Control N

Processor 1

Processor 2

Processor N

Memory

Instruction 1

Instruction 2

Instruction N

Data

Data

Data

The MISD architecture scheme

SIMD
A SIMD computer consists of n identical processors, each with its own local memory, where 
it is possible to store data. All processors work under the control of a single instruction 
stream; in addition to this, there are n data streams, one for each processor. The processors 
work simultaneously on each step and execute the same instruction, but on different data 
elements. This is an example of data-level parallelism. The SIMD architectures are much more 
versatile than MISD architectures. Numerous problems covering a wide range of applications 
can be solved by parallel algorithms on SIMD computers. Another interesting feature is that 
the algorithms for these computers are relatively easy to design, analyze, and implement. The 
limit is that only the problems that can be divided into a number of subproblems (which are 
all identical, each of which will then be solved contemporaneously, through the same set of 
instructions) can be addressed with the SIMD computer. With the supercomputer developed 
according to this paradigm, we must mention the Connection Machine (1985 Thinking 
Machine) and MPP (NASA - 1983). As we will see in Chapter 6, GPU Programming with Python, 
the advent of modern graphics processor unit (GPU), built with many SIMD embedded units 
has lead to a more widespread use of this computational paradigm.
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MIMD
This class of parallel computers is the most general and more powerful class according to 
Flynn's classification. There are n processors, n instruction streams, and n data streams 
in this. Each processor has its own control unit and local memory, which makes MIMD 
architectures more computationally powerful than those used in SIMD. Each processor 
operates under the control of a flow of instructions issued by its own control unit; therefore, 
the processors can potentially run different programs on different data, solving subproblems 
that are different and can be a part of a single larger problem. In MIMD, architecture is 
achieved with the help of the parallelism level with threads and/or processes. This also 
means that the processors usually operate asynchronously. The computers in this class 
are used to solve those problems that do not have a regular structure that is required by 
the model SIMD. Nowadays, this architecture is applied to many PCs, supercomputers, and 
computer networks. However, there is a counter that you need to consider: asynchronous 
algorithms are difficult to design, analyze, and implement.

Control 1

Control 2

Control N

Processor 1

Processor 2

Processor N

Instruction 1

Instruction 2

Instruction N

Data

Data

Data

Memory

Shared

Network

Interconnection

The MIMD architecture scheme

Memory organization
Another aspect that we need to consider to evaluate a parallel architecture is memory 
organization or rather, the way in which the data is accessed. No matter how fast the 
processing unit is, if the memory cannot maintain and provide instructions and data at a 
sufficient speed, there will be no improvement in performance. The main problem that must 
be overcome to make the response time of the memory compatible with the speed of the 
processor is the memory cycle time, which is defined as the time that has elapsed between 
two successive operations. The cycle time of the processor is typically much shorter than 
the cycle time of the memory. When the processor starts transferring data (to or from the 
memory), the memory will remain occupied for the entire time of the memory cycle: during 
this period, no other device (I/O controller, processor, or even the processor itself that made 
the request) can use the memory because it will be committed to respond to the request.
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Shared MemoryDistributed Memory

MPP Cluster of
Workstation

UMA NUMA NORMA COMA

MIMD

The memory organization in MIMD architecture

Solutions to the problem of access memory resulted in a dichotomy of MIMD architectures. 
In the first type of system, known as the shared memory system, there is high virtual memory 
and all processors have equal access to data and instructions in this memory. The other type 
of system is the distributed memory model, wherein each processor has a local memory that 
is not accessible to other processors. The difference between shared memory and distributed 
memory lies in the structure of the virtual memory or the memory from the perspective of 
the processor. Physically, almost every system memory is divided into distinct components 
that are independently accessible. What distinguishes a shared memory from a distributed 
memory is the memory access management by the processing unit. If a processor were 
to execute the instruction load R0, i, which means load in the R0 register the contents of 
the memory location i, the question now is what should happen? In a system with shared 
memory, the i index is a global address and the memory location i is the same for each 
processor. If two processors were to perform this instruction at the same time, they would 
load the same information in their registers R0. In a distributed memory system, i is a local 
address. If two processors were to load the statement R0 at the same time, different values 
may end up in the respective register's R0, since, in this case, the memory cells are allotted 
one for each local memory. The distinction between shared memory and distributed memory 
is very important for programmers because it determines the way in which different parts of 
a parallel program must communicate. In a system, shared memory is sufficient to build a 
data structure in memory and go to the parallel subroutine, which are the reference variables 
of this data structure. Moreover, a distributed memory machine must make copies of shared 
data in each local memory. These copies are created by sending a message containing the 
data to be shared from one processor to another. A drawback of this memory organization is 
that sometimes, these messages can be very large and take a relatively long transfer time.
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Shared memory
The schema of a shared memory multiprocessor system is shown in the following figure. The 
physical connections here are quite simple. The bus structure allows an arbitrary number 
of devices that share the same channel. The bus protocols were originally designed to allow 
a single processor, and one or more disks or tape controllers to communicate through the 
shared memory here. Note that each processor has been associated with a cache memory, 
as it is assumed that the probability that a processor needs data or instructions present in 
the local memory is very high. The problem occurs when a processor modifies data stored in 
the memory system that is simultaneously used by other processors. The new value will pass 
from the processor cache that has been changed to shared memory; later, however, it must 
also be passed to all the other processors, so that they do not work with the obsolete value. 
This problem is known as the problem of cache coherency, a special case of the problem of 
memory consistency, which requires hardware implementations that can handle concurrency 
issues and synchronization similar to those having thread programming.

Processor Processor Processor Processor

cache cache cache cache

Main Memory I/O System

The shared memory architecture schema

The main features of shared memory systems are:

ff The memory is the same for all processors, for example, all the processors associated 
with the same data structure will work with the same logical memory addresses, thus 
accessing the same memory locations.

ff The synchronization is made possible by controlling the access of processors to the 
shared memory. In fact, only one processor at a time can have access to the memory 
resources.
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ff A shared memory location must not be changed from a task while another task 
accesses it.

ff Sharing data is fast; the time required for the communication between two tasks is 
equal to the time for reading a single memory location (it is depending on the speed 
of memory access).

The memory access in shared memory systems are as follows:

ff Uniform memory access (UMA): The fundamental characteristic of this system is the 
access time to the memory that is constant for each processor and for any area of 
memory. For this reason, these systems are also called as symmetric multiprocessor 
(SMP). They are relatively simple to implement, but not very scalable; the 
programmer is responsible for the management of the synchronization by inserting 
appropriate controls, semaphores, locks, and so on in the program that manages 
resources.

ff Non-uniform memory access (NUMA): These architectures divide the memory area 
into a high-speed access area that is assigned to each processor and a common 
area for the data exchange, with slower access. These systems are also called as 
Distributed Shared Memory Systems (DSM). They are very scalable, but complex to 
develop.

ff No remote memory access (NORMA): The memory is physically distributed among 
the processors (local memory). All local memories are private and can only access 
the local processor. The communication between the processors is through a 
communication protocol used for exchange of messages, the message-passing 
protocol.

ff Cache only memory access (COMA): These systems are equipped with only 
cache memories. While analyzing NUMA architectures, it was noticed that these 
architectures kept the local copies of the data in the cache and that these data were 
stored as duplication in the main memory. This architecture removes duplicates 
and keeps only the cache memories, the memory is physically distributed among 
the processors (local memory). All local memories are private and can only access 
the local processor. The communication between the processors is through a 
communication protocol for exchange of messages, the message-passing protocol.
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Distributed memory
In a system with distributed memory, the memory is associated with each processor and a 
processor is only able to address its own memory. Some authors refer to this type of system 
as "multicomputer", reflecting the fact that the elements of the system are themselves small 
complete systems of a processor and memory, as you can see in the following figure:
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The distributed memory architecture scheme

This kind of organization has several advantages. At first, there are no conflicts at the level 
of the communication bus or switch. Each processor can use the full bandwidth of their 
own local memory without any interference from other processors. Secondly, the lack of a 
common bus means that there is no intrinsic limit to the number of processors, the size 
of the system is only limited by the network used to connect the processors. Thirdly, there 
are no problems of cache coherency. Each processor is responsible for its own data and 
does not have to worry about upgrading any copies. The main disadvantage is that the 
communication between processors is more difficult to implement. If a processor requires 
data in the memory of another processor, the two processors should necessarily exchange 
messages via the message-passing protocol. This introduces two sources of slowdown; to 
build and send a message from one processor to another takes time, and also, any processor 
should be stopped in order to manage the messages received from other processors. A 
program designed to work on a distributed memory machine must be organized as a set of 
independent tasks that communicate via messages.
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Memory Memory

data data

Basic message passing

The main features of distributed memory systems are as follows:

ff Memory is physically distributed between processors; each local memory is directly 
accessible only by its processor.

ff Synchronization is achieved by moving data (even if it's just the message itself) 
between processors (communication).

ff The subdivision of data in the local memories affects the performance of the 
machine—it is essential to make a subdivision accurate, so as to minimize the 
communication between the CPUs. In addition to this, the processor that coordinates 
these operations of decomposition and composition must effectively communicate 
with the processors that operate on the individual parts of data structures.

ff The message-passing protocol is used so that the CPU's can communicate with 
each other through the exchange of data packets. The messages are discrete units 
of information; in the sense that they have a well-defined identity, so it is always 
possible to distinguish them from each other.

Massively parallel processing
MPP machines are composed of hundreds of processors (which can be as large as hundreds 
of thousands in some machines) that are connected by a communication network. The fastest 
computers in the world are based on these architectures; some example systems of these 
architectures are: Earth Simulator, Blue Gene, ASCI White, ASCI Red, and ASCI Purple and  
Red Storm.
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A cluster of workstations
These processing systems are based on classical computers that are connected by 
communication networks. The computational clusters fall into this classification.

An example of a cluster of workstation architecture

In a cluster architecture, we define a node as a single computing unit that takes part in the 
cluster. For the user, the cluster is fully transparent—all the hardware and software complexity is 
masked and data and applications are made accessible as if they were all from a single node.

Here, we've identified three types of clusters:

ff The fail-over cluster: In this, the node's activity is continuously monitored, and when 
one stops working, another machine takes over the charge of those activities. The 
aim is to ensure a continuous service due to the redundancy of the architecture.

ff The load balancing cluster: In this system, a job request is sent to the node that has 
less activity. This ensures that less time is taken to complete the process.

ff The high-performance computing cluster: In this, each node is configured to provide 
extremely high performance. The process is also divided in multiple jobs on multiple 
nodes. The jobs are parallelized and will be distributed to different machines.
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The heterogeneous architecture
The introduction of GPU accelerators in the homogeneous world of supercomputing has 
changed the nature of how supercomputers were both used and programmed previously. 
Despite the high performance offered by GPUs, they cannot be considered as an autonomous 
processing unit as they should always be accompanied by a combination of CPUs. The 
programming paradigm, therefore, is very simple; the CPU takes control and computes in a 
serial manner, assigning to the graphic accelerator the tasks that are computationally very 
expensive and have a high degree of parallelism. The communication between a CPU and 
GPU can take place not only through the use of a high-speed bus, but also through the sharing 
of a single area of memory for both physical or virtual. In fact, in the case where both the 
devices are not equipped with their own memory areas, it is possible to refer to a common 
memory area using the software libraries provided by the various programming models, 
such as CUDA and OpenCL. These architectures are called heterogeneous architectures, 
wherein applications can create data structures in a single address space and send a job to 
the device hardware appropriate for the resolution of the task. Several processing tasks can 
operate safely on the same regions to avoid data consistency problems, thanks to the atomic 
operations. So, despite the fact that the CPU and GPU do not seem to work efficiently together, 
with the use of this new architecture, we can optimize their interaction with and performance 
of parallel applications.

Core 1

Core 3

Core 2

Core 4

CPU

GPU

Multiprocessor N-1 Multiprocessor N

Multiprocessor 1 Multiprocessor 2

Multiprocessor 3 Multiprocessor 4

The heterogeneous architecture scheme
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Parallel programming models
Parallel programming models exist as an abstraction of hardware and memory architectures. 
In fact, these models are not specific and do not refer to particular types of machines or 
memory architectures. They can be implemented (at least theoretically) on any kind of 
machines. Compared to the previous subdivisions, these programming models are made at 
a higher level and represent the way in which the software must be implemented to perform 
a parallel computation. Each model has its own way of sharing information with other 
processors in order to access memory and divide the work.

There is no better programming model in absolute terms; the best one to apply will depend 
very much on the problem that a programmer should address and resolve. The most widely 
used models for parallel programming are:

ff The shared memory model

ff The multithread model

ff The distributed memory/message passing model

ff The data parallel model

In this recipe, we will give you an overview of these models. A more accurate description 
will be in the next chapters that will introduce you to the appropriate Python module that 
implements these.

The shared memory model
In this model the tasks share a single shared memory area, where the access (reading and 
writing data) to shared resources is asynchronous. There are mechanisms that allow the 
programmer to control the access to the shared memory, for example, locks or semaphores. 
This model offers the advantage that the programmer does not have to clarify the 
communication between tasks. An important disadvantage in terms of performance is that 
it becomes more difficult to understand and manage data locality; keeping data local to the 
processor that works on it conserves memory accesses, cache refreshes, and bus traffic that 
occur when multiple processors use the same data.
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The multithread model
In this model, a process can have multiple flows of execution, for example, a sequential 
part is created and subsequently, a series of tasks are created that can be executed 
parallelly. Usually, this type of model is used on shared memory architectures. So, it will be 
very important for us to manage the synchronization between threads, as they operate on 
shared memory, and the programmer must prevent multiple threads from updating the same 
locations at the same time. The current generation CPUs are multithreaded in software and 
hardware. Posix threads are the classic example of the implementation of multithreading 
on software. The Intel Hyper-threading technology implements multithreading on hardware 
by switching between two threads when one is stalled or waiting on I/O. Parallelism can be 
achieved from this model even if the data alignment is nonlinear.

The message passing model
The message passing model is usually applied in the case where each processor has its own 
memory (distributed memory systems). More tasks can reside on the same physical machine 
or on an arbitrary number of machines. The programmer is responsible for determining the 
parallelism and data exchange that occurs through the messages. The implementation of 
this parallel programming model requires the use of (ad hoc) software libraries to be used 
within the code. Numerous implementations of message passing model were created: some 
of the examples are available since the 1980s, but only from the mid-90s, was created 
to standardized model, coming to a de facto standard called MPI (the message passing 
interface). The MPI model is designed clearly with distributed memory, but being models of 
parallel programming, multiplatform can also be used with a shared memory machine.

Machine A Machine B

task 1

task 2

data

data

send() send()

receive() receive()

NETWORK task 3

data

task 0

data

The message passing paradigm model
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The data parallel model
In this model, we have more tasks that operate on the same data structure, but each task 
operates on a different portion of data. In the shared memory architecture, all tasks have 
access to data through shared memory and distributed memory architectures, where the data 
structure is divided and resides in the local memory of each task. To implement this model, 
a programmer must develop a program that specifies the distribution and alignment of data. 
The current generation GPUs operates high throughout with the data aligned.

array A

Task 1 Task 2 Task 3

...
do i=1,25
A(i)=B(i)*delta
end do

...
do i=26,50
A(i)=B(i)*delta
end do

...
do i=51,100
A(i)=B(i)*delta
end do

The data parallel paradigm model

How to design a parallel program
The design of algorithms that exploit parallelism is based on a series of operations, which 
must necessarily be carried out for the program to perform the job correctly without producing 
partial or erroneous results. The macro operations that must be carried out for a correct 
parallelization of an algorithm are:

ff Task decomposition

ff Task assignment

ff Agglomeration

ff Mapping
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Task decomposition
In this first phase, the software program is split into tasks or a set of instructions that can 
then be executed on different processors to implement parallelism. To do this subdivision, 
there are two methods that are used:

ff Domain decomposition: Here, the data of the problems is decomposed; the 
application is common to all the processors that work on a different portion of 
data. This methodology is used when we have a large amount of data that must be 
processed.

ff Functional decomposition: In this case, the problem is split into tasks, where each 
task will perform a particular operation on all the available data.

Task assignment
In this step, the mechanism by which the task will be distributed among the various processes 
is specified. This phase is very important because it establishes the distribution of workload 
among the various processors. The load balance is crucial here; in fact, all processors must 
work with continuity, avoiding an idle state for a long time. To perform this, the programmer 
takes into account the possible heterogeneity of the system that tries to assign more tasks to 
better performing processors. Finally, for greater efficiency of parallelization, it is necessary to 
limit communication as much as possible between processors, as they are often the source of 
slowdowns and consumption of resources.

Agglomeration
Agglomeration is the process of combining smaller tasks with larger ones in order to improve 
performance. If the previous two stages of the design process partitioned the problem into a 
number of tasks that greatly exceed the number of processors available, and if the computer 
is not specifically designed to handle a huge number of small tasks (some architectures, such 
as GPUs, handle this fine and indeed benefit from running millions or even billions of tasks), 
then the design can turn out to be highly inefficient. Commonly, this is because tasks have 
to be communicated to the processor or thread so that they compute the said task. Most 
communication has costs that are not only proportional with the amount of data transferred, 
but also incur a fixed cost for every communication operation (such as the latency which is 
inherent in setting up a TCP connection). If the tasks are too small, this fixed cost can easily 
make the design inefficient.
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Mapping
In the mapping stage of the parallel algorithm design process, we specify where each task is 
to be executed. The goal is to minimize the total execution time. Here, you must often make 
tradeoffs, as the two main strategies often conflict with each other:

ff The tasks that communicate frequently should be placed in the same processor to 
increase locality

ff The tasks that can be executed concurrently should be placed in different processors 
to enhance concurrency

This is known as the mapping problem, and it is known to be NP-complete. As such, no 
polynomial time solutions to the problem in the general case exist. For tasks of equal size 
and tasks with easily identified communication patterns, the mapping is straightforward (we 
can also perform agglomeration here to combine tasks that map to the same processor.) 
However, if the tasks have communication patterns that are hard to predict or the amount 
of work varies per task, it is hard to design an efficient mapping and agglomeration scheme. 
For these types of problems, load balancing algorithms can be used to identify agglomeration 
and mapping strategies during runtime. The hardest problems are those in which the amount 
of communication or the number of tasks changes during the execution of the program. 
For these kind of problems, dynamic load balancing algorithms can be used, which run 
periodically during the execution.

Dynamic mapping
There exists many load balancing algorithms for various problems, both global and local. 
Global algorithms require global knowledge of the computation being performed, which 
often adds a lot of overhead. Local algorithms rely only on information that is local to the 
task in question, which reduces overhead compared to global algorithms, but are usually 
worse at finding an optimal agglomeration and mapping. However, the reduced overhead 
may reduce the execution time even though the mapping is worse by itself. If the tasks rarely 
communicate other than at the start and end of the execution, a task-scheduling algorithm 
is often used that simply maps tasks to processors as they become idle. In a task-scheduling 
algorithm, a task pool is maintained. Tasks are placed in this pool and are taken from it by 
workers.

There are three common approaches in this model, which are explained next.

Manager/worker
This is the basic dynamic mapping scheme in which all the workers connect to a the 
centralized manager. The manager repeatedly sends tasks to the workers and collects the 
results. This strategy is probably the best for a relatively small number of processors. The 
basic strategy can be improved by fetching tasks in advance so that communication and 
computation overlap each other.
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Hierarchical manager/worker
This is the variant of a manager/worker that has a semi-distributed layout; workers are split 
into groups, each with their own manager. These group managers communicate with the 
central manager (and possibly, among themselves as well), while workers request tasks 
from the group managers. This spreads the load among several managers and can, as such, 
handle a larger amount of processors if all workers request tasks from the same manager.

Decentralize
In this scheme, everything is decentralized. Each processor maintains its own task pool and 
communicates with the other processors in order to request tasks. How the processors choose 
other processors to request tasks varies and is determined on the basis of the problem.

How to evaluate the performance of a 
parallel program

The development of parallel programming created the need of performance metrics and a 
software tool to evaluate the performance of a parallel algorithm in order to decide whether 
its use is convenient or not. Indeed, the focus of parallel computing is to solve large problems 
in a relatively short time. The factors that contribute to the achievement of this objective 
are, for example, the type of hardware used, the degree of parallelism of the problem, and 
which parallel programming model is adopted. To facilitate this, analysis of basic concepts 
was introduced, which compares the parallel algorithm obtained from the original sequence. 
The performance is achieved by analyzing and quantifying the number of threads and/or the 
number of processes used.

To analyze this, a few performance indexes are introduced: speedup, efficiency, and scaling.

The limitations of a parallel computation are introduced by the Ahmdal's law to evaluate  
the degree of the efficiency of parallelization of a sequential algorithm we have the 
Gustafson's law.

Speedup
Speedup is the measure that displays the benefit of solving a problem in parallel. It is defined 
as the ratio of the time taken to solve a problem on a single processing element, TS, to the 
time required to solve the same problem on p identical processing elements, Tp.

We denote speedup by 
S

P

TS
T

=
. We have a linear speedup, where if S=p, it means that the 

speed of execution increases with the number of processors. Of course, this is an ideal case. 
While the speedup is absolute when Ts is the execution time of the best sequential algorithm, 
the speedup is relative when Ts is the execution time of the parallel algorithm for a single 
processor.
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Let's recap these conditions:

ff S = p is linear or ideal speedup

ff S < p is real speedup

ff S > p is superlinear speedup

Efficiency
In an ideal world, a parallel system with p processing elements can give us a speedup equal 
to p. However, this is very rarely achieved. Usually, some time is wasted in either idling or 
communicating. Efficiency is a performance metric estimating how well-utilized the processors 
are in solving a task, compared to how much effort is wasted in communication and 
synchronization.

We denote it by E and can define it as 
S

P

TSE
p pT

= =
. The algorithms with linear speedup have 

the value of E = 1; in other cases, the value of E is less than 1. The three cases are identified 
as follows:

ff When E = 1, it is a linear case

ff When E < 1, it is a real case

ff When E<< 1, it is a problem that is parallelizable with low efficiency

Scaling
Scaling is defined as the ability to be efficient on a parallel machine. It identifies the 
computing power (speed of execution) in proportion with the number of processors. By 
increasing the size of the problem and at the same time the number of processors, there will 
be no loss in terms of performance. The scalable system, depending on the increments of the 
different factors, may maintain the same efficiency or improve it.

Amdahl's law
Amdahl's law is a widely used law used to design processors and parallel algorithms. It states 
that the maximum speedup that can be achieved is limited by the serial component of the 

program: 
1
1

S
P

=
− , where 1 – P denotes the serial component (not parallelized) of a program. 

This means that for, as an example, a program in which 90 percent of the code can be made 
parallel, but 10 percent must remain serial, the maximum achievable speedup is 9 even for 
an infinite number of processors.
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Gustafson's law
Gustafson's law is based on the following considerations:

ff While increasing the dimension of a problem, its sequential parts remain constant

ff While increasing the number of processors, the work required on each of them still 
remains the same

This states that S(P) = P – α ( P – 1), where P is the number of processors, S is the speedup, 
and α is the non-parallelizable fraction of any parallel process. This is in contrast to Amdahl's 
law, which takes the single-process execution time to be the fixed quantity and compares 
it to a shrinking per process parallel execution time. Thus, Amdahl's law is based on the 
assumption of a fixed problem size; it assumes that the overall workload of a program does 
not change with respect to the machine size (that is, the number of processors). Gustafson's 
law addresses the deficiency of Amdahl's law, which does not take into account the total 
number of computing resources involved in solving a task. It suggests that the best way to 
set the time allowed for the solution of a parallel problem is to consider all the computing 
resources and on the basis of this information, it fixes the problem.

Introducing Python
Python is a powerful, dynamic, and interpreted programming language that is used in a wide 
variety of applications. Some of its features include:

ff A clear and readable syntax

ff A very extensive standard library, where through additional software modules, we can 
add data types, functions, and objects

ff Easy-to-learn rapid development and debugging; the development of Python code in 
Python can be up to 10 times faster than the C/C++ code

ff Exception-based error handling

ff A strong introspection functionality

ff Richness of documentation and software community

Python can be seen as a glue language. Using Python, better applications can be developed 
because different kinds of programmers can work together on a project. For example, when 
building a scientific application, C/C++ programmers can implement efficient numerical 
algorithms, while scientists on the same project can write Python programs that test and use 
those algorithms. Scientists don't have to learn a low-level programming language and a C/
C++ programmer doesn't need to understand the science involved.
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You can read more about this from https://www.python.org/doc/
essays/omg-darpa-mcc-position.

Getting ready
Python can be downloaded from https://www.python.org/downloads/.

Although you can create Python programs with Notepad or TextEdit, you'll notice that it's much 
easier to read and write code using an Integrated Development Environment (IDE).

There are many IDEs that are designated specifically for Python, including IDLE (http://
www.python.org/idle), PyCharm (https://www.jetbrains.com/pycharm/), and 
Sublime Text, (http://www.sublimetext.com/).

How to do it…
Let's take a look at some examples of the very basic code to get an idea of the features of 
Python. Remember that the symbol >>> denotes the Python shell:

ff Operations with integers:

>>> # This is a comment

>>> width = 20

>>> height = 5*9

>>> width * height

900

Only for this first example, we will see how the code appears in the Python shell:

https://www.python.org/doc/essays/omg-darpa-mcc-position
https://www.python.org/doc/essays/omg-darpa-mcc-position
https://www.python.org/downloads/
http://www.python.org/idle
http://www.python.org/idle
https://www.jetbrains.com/pycharm/
http://www.sublimetext.com/
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Let's see the other basic examples:

ff Complex numbers:
>>> a=1.5+0.5j

>>> a.real

1.5

>>> a.imag

0.5

>>> abs(a)  # sqrt(a.real**2 + a.imag**2)

5.0

ff Strings manipulation:
>>> word = 'Help' + 'A'

>>> word

'HelpA'

>>> word[4]

'A'

>>> word[0:2]

'He'

>>> word[-1]     # The last character

'A'

ff Defining lists:
>>> a = ['spam', 'eggs', 100, 1234]

>>> a[0]

'spam'

>>> a[3]

1234

>>> a[-2]

100

>>> a[1:-1]

['eggs', 100]

>>> len(a)

4
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ff The while loop:
# Fibonacci series:

>>> while b < 10:

...       print b

...       a, b = b, a+b

... 

1

1

2

3

5

8

ff The if command:

First we use the input() statement to insert an integer:
>>>x = int(input("Please enter an integer here: "))

Please enter an integer here:          

Then we implement the if condition on the number inserted:

>>>if x < 0:

...      print ('the number is negative')

...elif x == 0:

...      print ('the number is zero')

...elif x == 1:

...      print ('the number is one')

...else:

...      print ('More')

...

ff The for loop:
>>> # Measure some strings:

... a = ['cat', 'window', 'defenestrate']

>>> for x in a:

...     print (x, len(x))

... 

cat 3

window 6

defenestrate 12
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ff Defining functions:
>>> def fib(n):    # write Fibonacci series up to n

...     """Print a Fibonacci series up to n."""

...     a, b = 0, 1

...     while b < n:

...         print (b),

...         a, b = b, a+b

... 

>>> # Now call the function we just defined:

... fib(2000)

1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597

ff Importing modules:
>>> import math

>>> math.sin(1)

0.8414709848078965

>>> from math import *

>>> log(1)

0.0

ff Defining classes:

>>> class Complex:

...     def __init__(self, realpart, imagpart):

...         self.r = realpart

...         self.i = imagpart

... 

>>> x = Complex(3.0, -4.5)

>>> x.r, x.i

(3.0, -4.5)
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Python in a parallel world
To be an interpreted language, Python is fast, and if speed is critical, it easily interfaces with 
extensions written in faster languages, such as C or C++. A common way of using Python is to 
use it for the high-level logic of a program; the Python interpreter is written in C and is known 
as CPython. The interpreter translates the Python code in an intermediate language called 
Python bytecode, which is analogous to an assembly language, but contains a high level of 
instruction. While a Python program runs, the so-called evaluation loop translates Python 
bytecode into machine-specific operations. The use of interpreter has advantages in code 
programming and debugging, but the speed of a program could be a problem. A first solution 
is provided by third-party packages, where a programmer writes a C module and then imports 
it from Python. Another solution is the use of a Just-in-Time Python compiler, which is an 
alternative to CPython, for example, the PyPy implementation optimizes code generation and 
the speed of a Python program. In this book, we will examine a third approach to the problem; 
in fact, Python provides ad hoc modules that could benefit from parallelism. The description of 
many of these modules, in which the parallel programming paradigm falls, will be discussed in 
subsequent chapters.

However, in this chapter, we will introduce the two fundamental concepts of threads and 
processes and how they are addressed in the Python programming language.

Introducing processes and threads
A process is an executing instance of an application, for example, double-clicking on the 
Internet browser icon on the desktop will start a process than runs the browser. A thread is 
an active flow of control that can be activated in parallel with other threads within the same 
process. The term "flow control" means a sequential execution of machine instructions. Also, 
a process can contain multiple threads, so starting the browser, the operating system creates 
a process and begins executing the primary threads of that process. Each thread can execute 
a set of instructions (typically, a function) independently and in parallel with other processes 
or threads. However, being the different active threads within the same process, they share 
space addressing and then the data structures. A thread is sometimes called a lightweight 
process because it shares many characteristics of a process, in particular, the characteristics 
of being a sequential flow of control that is executed in parallel with other control flows that 
are sequential. The term "light" is intended to indicate that the implementation of a thread is 
less onerous than that of a real process. However, unlike the processes, multiple threads may 
share many resources, in particular, space addressing and then the data structures.
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Let's recap:

ff A process can consist of multiple parallel threads.

ff Normally, the creation and management of a thread by the operating system is 
less expensive in terms of CPU's resources than the creation and management of 
a process. Threads are used for small tasks, whereas processes are used for more 
heavyweight tasks—basically, the execution of applications.

ff The threads of the same process share the address space and other resources, while 
processes are independent of each other.

Before examining in detail the features and functionality of Python modules for the 
management of parallelism via threads and processes, let's first look at how the Python 
programming language works with these two entities.

Start working with processes in Python
On common operating systems, each program runs in its own process. Usually, we start a 
program by double-clicking on the icon's program or selecting it from a menu. In this recipe, 
we simply demonstrate how to start a single new program from inside a Python program. 
A process has its own space address, data stack, and other auxiliary data to keep track of 
the execution; the OS manages the execution of all processes, managing the access to the 
computational resources of the system via a scheduling procedure.

Getting ready
In this first Python application, you'll simply get the Python language installed.

Refer to https://www.python.org/ to get the latest version of Python.

How to do it…
To execute this first example, we need to type the following two programs:

ff called_Process.py

ff calling_Process.py

https://www.python.org/
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You can use the Python IDE (3.3.0) to edit these files:

The code for the called_Process.py file is as shown:

print ("Hello Python Parallel Cookbook!!")

closeInput = raw_input("Press ENTER to exit")

print "Closing calledProcess"

The code for the calling_Process.py file is as shown:

##The following modules must be imported

import os

import sys

##this is the code to execute

program = "python"

print("Process calling")

arguments = ["called_Process.py"]

##we call the called_Process.py script

os.execvp(program, (program,) + tuple(arguments))

print("Good Bye!!")

To run the example, open the calling_Process.py program with the Python IDE and then 
press the F5 button on the keyboard.

You will see the following output in the Python shell:
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At same time, the OS prompt displays the following:

We have two processes running to close the OS prompt; simply press the Enter button on the 
keyboard to do so.

How it works…
In the preceding example, the execvp function starts a new process, replacing the current 
one. Note that the "Good Bye" message is never printed. Instead, it searches for the program 
called_Process.py along the standard path, passes the contents of the second argument 
tuple as individual arguments to that program, and runs it with the current set of environment 
variables. The instruction input() in called_Process.py is only used to manage the 
closure of OS prompt. In the recipe dedicated to process-based parallelism, we will finally see 
how to manage a parallel execution of more processes via the multiprocessing Python module.

Start working with threads in Python
As mentioned briefly in the previous section, thread-based parallelism is the standard way 
of writing parallel programs. However, the Python interpreter is not fully thread-safe. In order 
to support multithreaded Python programs, a global lock called the Global Interpreter Lock 
(GIL) is used. This means that only one thread can execute the Python code at the same time; 
Python automatically switches to the next thread after a short period of time or when a thread 
does something that may take a while. The GIL is not enough to avoid problems in your own 
programs. Although, if multiple threads attempt to access the same data object, it may end up 
in an inconsistent state.

In this recipe, we simply show you how to create a single thread inside a Python program.
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How to do it…
To execute this first example, we need the program helloPythonWithThreads.py:

## To use threads you need import Thread using the following code:

from threading import Thread

##Also we use the sleep function to make the thread "sleep" 

from time import sleep

## To create a thread in Python you'll want to make your class work as a 
thread.

## For this, you should subclass your class from the Thread class

class CookBook(Thread):

    def __init__(self):

        Thread.__init__(self)

        self.message = "Hello Parallel Python CookBook!!\n"

##this method prints only the message 

    def print_message(self):

        print (self.message)

##The run method prints ten times the message 

    def run(self):

        print ("Thread Starting\n")

        x=0

        while (x < 10):

            self.print_message()

            sleep(2)

            x += 1

        print ("Thread Ended\n")

#start the main process

print ("Process Started")
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# create an instance of the HelloWorld class

hello_Python = CookBook()

# print the message...starting the thread

hello_Python.start()

#end the main process

print ("Process Ended")

To run the example, open the calling_Process.py program with the Python IDE and then 
press the F5 button on the keyboard.

You will see the following output in the Python shell:
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How it works…
While the main program has reached the end, the thread continues printing its message every 
two seconds. This example demonstrates what threads are—a subtask doing something in a 
parent process.

A key point to make when using threads is that you must always make sure that you never 
leave any thread running in the background. This is very bad programming and can cause you 
all sorts of pain when you work on bigger applications.
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2
Thread-based 

Parallelism

In this chapter, we will cover the following recipes:

ff How to use the Python threading module

ff How to define a thread

ff How to determine the current thread

ff How to use a thread in a subclass

ff Thread synchronization with Lock and RLock

ff Thread synchronization with semaphores

ff Thread synchronization with a condition

ff Thread synchronization with an event

ff How to use the with statement

ff Thread communication using a queue

ff Evaluating the performance of multithread applications

ff The criticality of multithreaded programming
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Introduction
Currently, the most widely used programming paradigm for the management of concurrence 
in software applications is based on multithreading. Generally, an application is made by a 
single process that is divided into multiple independent threads, which represent activities  
of different types that run parallel and compete with each other.

Although such a style of programming can lead to disadvantages of use and problems  
that need to be solved, modern applications with the mechanism of multithreading are  
still used quite widely.

Practically, all the existing operating systems support multithreading, and in almost all 
programming languages, there are mechanisms that you can use to implement concurrent 
applications through the use of threads.

Therefore, multithreaded programming is definitely a good choice to achieve concurrent 
applications. However, it is not the only choice available—there are several other alternatives, 
some of which, inter alia, perform better on the definition of thread.

A thread is an independent execution flow that can be executed parallelly and concurrently 
with other threads in the system. Multiple threads can share data and resources, taking 
advantage of the so-called space of shared information. The specific implementation of 
threads and processes depends on the operating system on which you plan to run the 
application, but, in general, it can be stated that a thread is contained inside a process and 
that different threads in the same process conditions share some resources. In contrast to 
this, different processes do not share their own resources with other processes.

Each thread appears to be mainly composed of three elements: program counter, registers, 
and stack. Shared resources with other threads of the same process essentially include 
data and operating system resources. Similar to what happens to the processes, even the 
threads have their own state of execution and can synchronize with each other. The states of 
execution of a thread are generally called ready, running, and blocked. A typical application of 
a thread is certainly parallelization of an application software, especially, to take advantage 
of modern multi-core processors, where each core can run a single thread. The advantage 
of threads over the use of processes lies in the performance, as the context switch between 
processes turns out to be much heavier than the switch context between threads that belong 
to the same process.

Multithreaded programming prefers a communication method between threads using the 
space of shared information. This choice requires that the major problem that is to be 
addressed by programming with threads is related to the management of that space.
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Using the Python threading module
Python manages a thread via the threading package that is provided by the Python 
standard library. This module provides some very interesting features that make the 
threading-based approach a whole lot easier; in fact, the threading module provides several 
synchronization mechanisms that are very simple to implement.

The major components of the threading module are:

ff The thread object

ff The Lock object

ff The RLock object

ff The semaphore object

ff The condition object

ff The event object

In the following recipes, we examine the features offered by the threading library with different 
application examples. For the examples that follow, we will refer to the Python distribution 3.3 
(even though Python 2.7 could be used).

How to define a thread
The simplest way to use a thread is to instantiate it with a target function and then call the 
start() method to let it begin its work. The Python module threading has the Thread() 
method that is used to run processes and functions in a different thread:

class threading.Thread(group=None,
                       target=None,
                       name=None,
                       args=(),
                       kwargs={}) 

In the preceding code:

ff group: This is the value of group that should be None; this is reserved for future 
implementations

ff target: This is the function that is to be executed when you start a thread activity

ff name: This is the name of the thread; by default, a unique name of the form 
Thread-N is assigned to it
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ff args: This is the tuple of arguments that are to be passed to a target

ff kwargs: This is the dictionary of keyword arguments that are to be used for the 
target function

It is useful to spawn a thread and pass arguments to it that tell it what work to do. This 
example passes a number, which is the thread number, and then prints out the result.

How to do it…
Let's see how to define a thread with the threading module, for this, a few lines of code are 
necessary:

import threading

def function(i):
    print ("function called by thread %i\n"  %i)
    return

threads = []
for i in range(5):
    t = threading.Thread(target=function , args=(i,))
    threads.append(t)
    t.start()
    t.join()

The output of the preceding code should be, as follows:

We should also point out that the output could be achieved in a different manner; in fact, 
multiple threads might print the result back to stdout at the same time, so the output order 
cannot be predetermined.
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How it works…
To import the threading module, we simply use the Python command:

import threading 

In the main program, we instantiate a thread, using the Thread object with a target function 
called function. Also, we pass an argument to the function that will be included in the 
output message:

t = threading.Thread(target=function , args=(i,))

The thread does not start running until the start() method is called, and that join() 
makes the calling thread wait until the thread has finished the execution:

t.start()
t.join() 

How to determine the current thread
Using arguments to identify or name the thread is cumbersome and unnecessary. Each 
Thread instance has a name with a default value that can be changed as the thread is 
created. Naming threads is useful in server processes with multiple service threads that 
handle different operations.

How to do it…
To determine which thread is running, we create three target functions and import the  
time module to introduce a suspend execution of two seconds:

import threading
import time

def first_function():
    print (threading.currentThread().getName()+\
           str(' is Starting \n'))
    time.sleep(2)
    print (threading.currentThread().getName()+\
           str( ' is Exiting \n'))
    return

def second_function():
    print (threading.currentThread().getName()+\
           str(' is Starting \n'))
    time.sleep(2)
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    print (threading.currentThread().getName()+\
           str( ' is Exiting \n'))
    return

def third_function():
    print (threading.currentThread().getName()+\
           str(' is Starting \n'))
    time.sleep(2)
    print (threading.currentThread().getName()+\
           str( ' is Exiting \n'))
    return

if __name__ == "__main__":

    t1 = threading.Thread\
         (name='first_function', target=first_function)
    t2 = threading.Thread\
         (name='second_function', target=second_function)
    t3 = threading.Thread\
         (name='third_function',target=third_function) 

    t1.start()
    t2.start()
    t3.start()

The output of this should be, as follows:
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How it works…
We instantiate a thread with a target function. Also, we pass the name that is to be printed 
and if it is not defined, the default name will be used:

t1 = threading.Thread(name='first_function', target=first_function)
t2 = threading.Thread(name='second_function', target=second_function)
t3 = threading.Thread(target=third_function) 

Then, we call the start() and join() methods on them:

t1.start()
t2.start()
t3.start()
t1.join()
t2.join()
t3.join()

How to use a thread in a subclass
To implement a new thread using the threading module, you have to do the following:

ff Define a new subclass of the Thread class

ff Override the _init__(self [,args]) method to add additional arguments

ff Then, you need to override the run(self [,args]) method to implement what  
the thread should do when it is started

Once you have created the new Thread subclass, you can create an instance of it and then 
start a new thread by invoking the start() method, which will, in turn, call the run() method.

How to do it…
To implement a thread in a subclass, we define the myThread class. It has two methods that 
must be overridden with the thread's arguments:

import threading
import time

exitFlag = 0

class myThread (threading.Thread):
    def __init__(self, threadID, name, counter):
        threading.Thread.__init__(self)
        self.threadID = threadID
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        self.name = name
        self.counter = counter
    def run(self):
        print ("Starting " + self.name)
        print_time(self.name, self.counter, 5)
        print ("Exiting " + self.name)

def print_time(threadName, delay, counter):
    while counter:
        if exitFlag:
            thread.exit()
        time.sleep(delay)
        print ("%s: %s" %\
               (threadName, time.ctime(time.time())))
        counter -= 1

# Create new threads
thread1 = myThread(1, "Thread-1", 1)
thread2 = myThread(2, "Thread-2", 2)

# Start new Threads
thread1.start()
thread2.start()
print ("Exiting Main Thread")

When the previous code is executed, it produces the following result:
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How it works…
The threading module is the preferred form for creating and managing threads. Each thread is 
represented by a class that extends the Thread class and overrides its run() method. Then, 
this method becomes the starting point of the thread. In the main program, we create several 
objects of the myThread type; the execution of the thread begins when the start() method 
is called. Calling the constructor of the Thread class is mandatory—using it, we can redefine 
some properties of the thread as the name or group of the thread. The thread is placed in the 
active state of the call to start() and remains there until it ends the run() method or you 
throw an unhandled exception to it. The program ends when all the threads are terminated.

The join()command just handles the termination of threads.

Thread synchronization with Lock and 
RLock

When two or more operations belonging to concurrent threads try to access the shared 
memory and at least one of them has the power to change the status of the data without 
a proper synchronization mechanism a race condition can occur and it can produce invalid 
code execution and bugs and unexpected behavior. The easiest way to get around the race 
conditions is the use of a lock. The operation of a lock is simple; when a thread wants to 
access a portion of shared memory, it must necessarily acquire a lock on that portion prior 
to using it. In addition to this, after completing its operation, the thread must release the lock 
that was previously obtained so that a portion of the shared memory is available for any other 
threads that want to use it. In this way, it is evident that the impossibility of incurring races 
is critical as the need of the lock for the thread requires that at a given instant, only a given 
thread can use this part of the shared memory. Despite their simplicity, the use of a lock 
works. However, in practice, we can see how this approach can often lead the execution to a 
bad situation of deadlock. A deadlock occurs due to the acquisition of a lock from different 
threads; it is impossible to proceed with the execution of operations since the various locks 
between them block access to the resources.

Thread A

wait

set

Thread B

set

wait

Thread B waits
for variable 2
to be set by
Thread A

Thread A can't
set variable 1

Thread A waits
for variable 1
to be set by
Thread B

Thread A can't
set variable 2

Shared Variables

1

2

Deadlock
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For the sake of simplicity, let's think of a situation wherein there are two concurrent threads 
(Thread A and Thread B) who have at their disposal resources 1 and 2. Suppose Thread A 
requires resource 1 and Thread B requires resource 2. In this case, both threads require 
their own lock and up to this point, everything proceeds smoothly. Imagine, however, that 
subsequently, before releasing the lock, Thread A requires a lock on resource 2 and Thread 
B requires a lock on resource 1, which is now necessary for both the processes. Since both 
resources are locked, the two threads are blocked and waiting each other until the occupied 
resource is released. This situation is the most emblematic example of the occurrence of a 
deadlock situation. As said, therefore, showing the use of locks to ensure synchronization so 
that you can access the shared memory on one hand is a working solution, but, on the other 
hand, it is potentially destructive in certain cases.

In this recipe, we describe the Python threading synchronization mechanism called lock(). 
It allows us to restrict the access of a shared resource to a single thread or a single type 
of thread at a time. Before accessing the shared resource of the program, the thread must 
acquire the lock and must then allow any other threads access to the same resource.

How to do it…
The following example demonstrates how you can manage a thread through the mechanism 
of lock(). In this code, we have two functions: increment() and decrement(), 
respectively. The first function increments the value of the shared resource, while the second 
function decrements the value, where each function is inserted in a suitable thread. In 
addition to this, each function has a loop in which the increase or decrease is repeated. We 
want to make sure, through the proper management of the shared resources, that the result 
of the execution is equal to the value of the shared variable that is initialized to zero.

The sample code is shown, as follows, where each feature within the sample code is properly 
commented:

import threading

shared_resource_with_lock     = 0
shared_resource_with_no_lock     = 0
COUNT = 100000
shared_resource_lock = threading.Lock()

####LOCK MANAGEMENT##
def increment_with_lock():
    global shared_resource_with_lock
    for i in range(COUNT):
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        shared_resource_lock.acquire()
        shared_resource_with_lock += 1
        shared_resource_lock.release()

def decrement_with_lock():
    global shared_resource_with_lock
    for i in range(COUNT):
        shared_resource_lock.acquire()
        shared_resource_with_lock -= 1
        shared_resource_lock.release()
        
####NO LOCK MANAGEMENT ##
def increment_without_lock():
    global shared_resource_with_no_lock
    for i in range(COUNT):
        shared_resource_with_no_lock += 1
 
def decrement_without_lock():
    global shared_resource_with_no_lock
    for i in range(COUNT):
        shared_resource_with_no_lock -= 1
 
####the Main program
if __name__ == "__main__":
    t1 = threading.Thread(target = increment_with_lock)
    t2 = threading.Thread(target = decrement_with_lock)
    t3 = threading.Thread(target = increment_without_lock)
    t4 = threading.Thread(target = decrement_without_lock)
    t1.start()
    t2.start()
    t3.start()
    t4.start()
    t1.join()
    t2.join()
    t3.join()
    t4.join()
    print ("the value of shared variable with lock management is %s"\
           %shared_resource_with_lock)
    print ("the value of shared variable with race condition is %s"\
           %shared_resource_with_no_lock)   
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This is the result that you get after a single run:

As you can see, we have the correct result with the appropriate management and lock 
instructions. Note again that the result for the shared variable without lock management 
could differ from the result shown.

How it works…
In the main method, we have the following procedures:

t1 = threading.Thread(target = increment_with_lock)

t2 = threading.Thread(target = decrement_with_lock)

For thread starting, use:

t1.start()
t2.start()

For thread joining, use:

t1.join()
t2.join()

In the increment_with_lock() and decrement_with_lock()functions, you can see how 
to use lock management. When you need to access the resource, call acquire() to hold the 
lock (this will wait for the lock to be released, if necessary) and call release() to release it:

shared_resource_lock.acquire()
shared_resource_with_lock -= 1
shared_resource_lock.release()
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Let's recap:

ff Locks have two states: locked and unlocked

ff We have two methods that are used to manipulate the locks: acquire() and 
release()

The following are the rules:

ff If the state is unlocked, a call to acquire() changes the state to locked

ff If the state is locked, a call to acquire() blocks until another thread calls release()

ff If the state is unlocked, a call to release() raises a RuntimeError exception

ff If the state is locked, a call to release() changes the state to unlocked

There's more…
Despite their theoretical smooth running, the locks are not only subject to harmful situations 
of deadlock, but also have many other negative aspects for the application as a whole. This is 
a conservative approach which, by its nature, often introduces unnecessary overhead; it also 
limits the scalability of the code and its readability. Furthermore, the use of a lock is decidedly 
in conflict with the possible need to impose the priority of access to the memory shared by 
the various processes. Finally, from a practical point of view, an application containing a lock 
presents considerable difficulties when searching for errors (debugging). In conclusion, it 
would be appropriate to use alternative methods to ensure synchronized access to shared 
memory and avoid race conditions.

Thread synchronization with RLock
If we want only the thread that acquires a lock to release it, we must use a RLock() object. 
Similar to the Lock() object, the RLock() object has two methods: acquire() and 
release(). RLock() is useful when you want to have a thread-safe access from outside the 
class and use the same methods from inside the class.

How to do it…
In the sample code, we introduced the Box class, which has the methods add() and 
remove(), respectively, that provide us access to the execute() method so that we can 
perform the action of adding or deleting an item, respectively. Access to the execute() 
method is regulated by RLock():

import threading
import time
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class Box(object):
    lock = threading.RLock()
    def __init__(self):
        self.total_items = 0
    def execute(self,n):
        Box.lock.acquire()
        self.total_items += n
        Box.lock.release()
    def add(self):
        Box.lock.acquire()
        self.execute(1)
        Box.lock.release()
    def remove(self):
        Box.lock.acquire()
        self.execute(-1)
        Box.lock.release()

## These two functions run n in separate
## threads and call the Box's methods

def adder(box,items):
    while items > 0:
        print ("adding 1 item in the box\n")
        box.add()
        time.sleep(5)
        items -= 1

def remover(box,items):
    while items > 0:
        print ("removing 1 item in the box")
        box.remove()
        time.sleep(5)
        items -= 1

## the main program build some
## threads and make sure it works
if __name__ == "__main__":
    items = 5
    print ("putting %s items in the box " % items)
    box = Box()
    t1 = threading.Thread(target=adder,args=(box,items))
    t2 = threading.Thread(target=remover,args=(box,items))
    t1.start()
    t2.start()
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    t1.join()
    t2.join()
    print ("%s items still remain in the box " % box.total_items)

How it works…
In the main program, we repeated what was written in the preceding example; the two threads 
t1 and t2 are with the associated functions adder() and remover(). The functions are 
active when the number of items is greater than zero. The call to RLock() is carried out 
inside the Box class:

class Box(object):
    lock = threading.RLock()

The two functions adder() and remover()interact with the items of the Box class, 
respectively, and call the Box class methods: add() and remove(). In each method call, 
a resource is captured and then released. As for the object lock(), RLock() owns the 
acquire() and release() methods to acquire and release the resource; then for each 
method, we have the following function calls:

        Box.lock.acquire()
     #...do something
        Box.lock.release()

The execution result of the RLock() object's example
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Thread synchronization with semaphores
Invented by E. Dijkstra and used for the first time in the operating system, a semaphore is 
an abstract data type managed by the operating system, used to synchronize the access by 
multiple threads to shared resources and data. Essentially, a semaphore is constituted of an 
internal variable that identifies the number of concurrent access to a resource to which it is 
associated.

Also, in the threading module, the operation of a semaphore is based on the two functions 
acquire() and release(), as explained:

ff Whenever a thread wants to access a resource that is associated with a semaphore, 
it must invoke the acquire() operation, which decreases the internal variable of 
the semaphore and allows access to the resource if the value of this variable appears 
to be non-negative. If the value is negative, the thread would be suspended and the 
release of the resource by another thread will be placed on hold.

ff Whenever a thread has finished using the data or shared resource, it must release 
the resource through the release() operation. In this way, the internal variable  
of the semaphore is incremented, and the first waiting thread in the semaphore's 
queue will have access to the shared resource.

Thread Thread
release
acquire

release
acquire

SEMAPHORE

SHARED
RESOURCE

Thread synchronization with semaphores

Although at first glance the mechanism of semaphores does not present obvious problems,  
it works properly only if the wait and signal operations are performed in atomic blocks. If not, 
or if one of the two operations is stopped, this could arise unpleasant situations.

Suppose that two threads execute simultaneously, the operation waits on a semaphore, 
whose internal variable has the value 1. Also assume that after the first thread has 
the semaphore decremented from 1 to 0, the control goes to the second thread, which 
decrements the light from 0 to -1 and waits as the negative value of the internal variable.  
At this point, with the control that returns to the first thread, the semaphore has a negative 
value and therefore, the first thread also waits.

Therefore, despite the semaphore having access to a thread, the fact that the wait operation 
was not performed in atomic terms has led to a solution of the stall.
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Getting ready
The next code describes the problem, where we have two threads, producer() and 
consumer() that share a common resource, which is the item. The task of producer() is 
to generate the item while the consumer() thread's task is to use the item produced.

If the item has not yet produced the consumer() thread, it has to wait. As soon as the item is 
produced, the producer() thread notifies the consumer that the resource should be used.

How to do it…
In the following example, we use the consumer-producer model to show you the 
synchronization via semaphores. When the producer creates an item, it releases the 
semaphore. Also, the consumer acquires it and consumes the shared resource. The 
synchronization process done via the semaphores is shown in the following code:

###Using a Semaphore to synchronize threads

import threading
import time
import random

##The optional argument gives the initial value for the internal 
##counter;
##it defaults to 1.
##If the value given is less than 0, ValueError is raised.
semaphore = threading.Semaphore(0)

def consumer():
    print ("consumer is waiting.")
    ##Acquire a semaphore
    semaphore.acquire()
    ##The consumer have access to the shared resource
    print ("Consumer notify : consumed item number %s " %item)

def producer():
    global item
    time.sleep(10)
    ##create a random item
    item = random.randint(0,1000)
    print ("producer notify : produced item number %s" %item)
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    ##Release a semaphore, incrementing the internal counter by one.
    ##When it is zero on entry and another thread is waiting for it
    ##to become larger than zero again, wake up that thread.
    semaphore.release()

#Main program
if __name__ == '__main__':
    for i in range (0,5) :
        t1 = threading.Thread(target=producer)
        t2 = threading.Thread(target=consumer)
        t1.start()
        t2.start()
        t1.join()
        t2.join()
    print ("program terminated")

This is the result that we get after five runs:
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How it works…
Initializing a semaphore to 0, we obtain a so-called semaphore event whose sole purpose is 
to synchronize the computation of two or more threads. Here, a thread must necessarily make 
use of data or common resources simultaneously:

semaphore = threading.Semaphore(0)

This operation is very similar to that described in the lock mechanism of the lock. The 
producer() thread creates the item and after that, frees the resource by calling:

semaphore.release()

The semaphore's release() method increments the counter and then notifies the other 
thread. Similarly, the consumer() method acquires the data by:

    semaphore.acquire()

If the semaphore's counter is equal to 0, it blocks the condition's acquire() method until it 
gets notified by a different thread. If the semaphore's counter is greater than 0, it decrements 
the value.

Finally, the acquired data is then printed on the standard output:

print ("Consumer notify : consumed item number %s " %item)

There's more…
A particular use of semaphores is the mutex. A mutex is nothing but a semaphore with an 
internal variable initialized to the value 1, which allows the realization of mutual exclusion in 
access to data and resources.

Semaphores are still commonly used in programming languages that are multithreaded; 
however, using them you can run into situations of deadlock. For example, there is a deadlock 
situation created when the thread t1 executes a wait on the semaphore s1, while the t2 
thread executes a wait on the semaphore s1, and then t1, and then executes a wait on s2 
and t2, and then executes a wait on s1.
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Thread synchronization with a condition
A condition identifies a change of state in the application. This is a synchronization 
mechanism where a thread waits for a specific condition and another thread notifies that this 
condition has taken place. Once the condition takes place, the thread acquires the lock to get 
exclusive access to the shared resource.

Getting ready
A good way to illustrate this mechanism is by looking again at a producer/consumer problem. 
The class producer writes to a buffer as long as it is not full, and the class consumer takes the 
data from the buffer (eliminating them from the latter), as long as the buffer is full. The class 
producer will notify the consumer that the buffer is not empty, while the consumer will report 
to the producer that the buffer is not full.

How to do it…
To show you the condition mechanism, we will again use the consumer producer model:

from threading import Thread, Condition
import time

items = []
condition = Condition()

class consumer(Thread):
  def __init__(self):
    Thread.__init__(self)

  def consume(self):
    global condition
    global items  

    condition.acquire()
    if len(items) == 0:
      condition.wait()
      print("Consumer notify : no item to consume")
    items.pop()
    print("Consumer notify : consumed 1 item")
    print("Consumer notify : items to consume are "\
                      + str(len(items)))
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    condition.notify()
    condition.release()
    
  def run(self):
    for i in range(0,20):
      time.sleep(10)
      self.consume()
      

class producer(Thread):
  def __init__(self):
    Thread.__init__(self)

  def produce(self):
    global condition
    global items

    condition.acquire()
    if len(items) == 10:
      condition.wait()
      print("Producer notify : items producted are "\
                              + str(len(items)))
      print("Producer notify : stop the production!!")
    items.append(1)
    print("Producer notify : total items producted "\
                      + str(len(items)))
    condition.notify()
    condition.release()

  def run(self):
    for i in range(0,20):
      time.sleep(5)
      self.produce()      

if __name__ == "__main__":
        producer = producer()
        consumer = consumer()
        producer.start()
        consumer.start()
        producer.join()
        consumer.join()
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This is the result that we get after a single run:

How it works…
The class consumer acquires the shared resource that is modeled through the list items[]:

condition.acquire()

If the length of the list is equal to 0, the consumer is placed in a waiting state:

if len(items) == 0:
   condition.wait()
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Otherwise, it makes a pop operation from the items list:

items.pop()

So, the consumer's state is notified to the producer and the shared resource is released:

condition.notify()
condition.release()

The class producer acquires the shared resource and then it verifies that the list is completely 
full (in our example, we place the maximum number of items, 10, that can be contained in 
the items list). If the list is full, then the producer is placed in the wait state until the list is 
consumed:

condition.acquire()
if len(items) == 10:
   condition.wait()

If the list is not full, a single item is added. The state is notified and the resource is released:

condition.notify()
condition.release()

There's more…
It's interesting to see the Python internals for the condition synchronizations mechanism. The 
internal class _Condition creates a RLock() object if no existing lock is passed to the class's 
constructor. Also, the lock will be managed when acquire() and released() are called:

class _Condition(_Verbose):
    def __init__(self, lock=None, verbose=None):
        _Verbose.__init__(self, verbose)
        if lock is None:
            lock = RLock()
        self.__lock = lock

Thread synchronization with an event
Events are objects that are used for communication between threads. A thread waits for a 
signal while another thread outputs it. Basically, an event object manages an internal flag that 
can be set to true with the set() method and reset to false with the clear() method. 
The wait() method blocks until the flag is true.
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How to do it…
To understand the thread synchronization through the event object, let's take a look again  
at the producer/consumer problem:

import time
from threading import Thread, Event
import random

items = []
event = Event()

class consumer(Thread):
    def __init__(self, items, event):
        Thread.__init__(self)
        self.items = items
        self.event = event
    
    def run(self):
        while True:
            time.sleep(2)
            self.event.wait()
            item = self.items.pop()
            print ('Consumer notify : %d popped from list by %s'\
                   %(item, self.name))
            

class producer(Thread):
    def __init__(self, integers, event):
        Thread.__init__(self)
        self.items = items
        self.event = event
    
    def run(self):
        global item
        for i in range(100):
            time.sleep(2)
            item = random.randint(0, 256)
            self.items.append(item) 
            print ('Producer notify : item N° %d appended \
                   to list by %s'\
                   % (item, self.name))
            print ('Producer notify : event set by %s'\
                   % self.name)
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            self.event.set()
            print ('Produce notify : event cleared by %s \n'\
                   % self.name)
            self.event.clear()

if __name__ == '__main__':
    t1 = producer(items, event)
    t2 = consumer(items, event)
    t1.start()
    t2.start()
    t1.join()
        t2.join()

This is the output that we get when we run the program. The t1 thread appends a value to 
the list and then sets the event to notify the consumer. The consumer's call to wait() stops 
blocking and the integer is retrieved from the list.
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How it works…
The producer class is initialized with the list of items and the Event() function. Unlike the 
example with condition objects, the item list is not global, but it is passed as a parameter:

class consumer(Thread):
    def __init__(self, items, event):
        Thread._init__(self)
        self.items = items
        self.event = event

In the run method for each item that is created, the producer class appends it to the list of 
items and then notifies the event. There are two steps that you need to take for this and the 
first step is as follows:

self.event.set()

The second step is:

self.event.clear() 

The consumer class is initialized with the list of items and the Event() function.

In the run method, the consumer waits for a new item to consume. When the item arrives, it is 
popped from the item list:

def run(self):
    while True:
       time.sleep(2)
       self.event.wait()
       item = self.items.pop()
       print ('Consumer notify : %d popped from list by %s' % 
             (item, self.name))

All the operations between the producer and the consumer classes can be easily resumed 
with the help of the following schema:

Producer Event Management Consumer Event Management

wait

remove
item

clear
event

Sleep

add
item

set
event

P C

Thread synchronization with event objects
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Using the with statement
Python's with statement was introduced in Python 2.5. It's useful when you have two related 
operations that must be executed as a pair with a block of code in between. Also, with the 
with statement, you can allocate and release some resource exactly where you need it; for 
this reason, the with statement is called a context manager. In the threading module, all 
the objects provided by the acquire() and release() methods may be used in a with 
statement block.

So the following objects can be used as context managers for a with statement:

ff Lock

ff RLock

ff Condition

ff Semaphore

Getting ready
In this example, we simply test all the objects using the with statement.

How to do it…
This example shows the basic use of the with statement. We have a set with the most 
important synchronization primitives. So, we test them by calling each one with the with 
statement:

import threading
import logging

logging.basicConfig(level=logging.DEBUG,
                   format='(%(threadName)-10s) %(message)s',)

def threading_with(statement):
    with statement:
        logging.debug('%s acquired via with'  %statement)
        
def threading_not_with(statement):
    statement.acquire()
    try:
        logging.debug('%s acquired directly' %statement )
    finally:
        statement.release()
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if __name__ == '__main__':

#let's create a test battery
    lock = threading.Lock()
    rlock = threading.RLock()
    condition = threading.Condition()
    mutex = threading.Semaphore(1)
    threading_synchronization_list = \
      [lock, rlock, condition, mutex]

#in the for cycle we call the threading_with 
# e threading_no_with function
    for statement in threading_synchronization_list :
        t1 = threading.Thread(target=threading_with,  
             args=(statement,))
        t2 = threading.Thread(target=threading_not_with,   
             args=(statement,))
        t1.start()
        t2.start()
        t1.join()
        t2.join()

The output shows the use of the with statement for each function and also where it is not 
used:
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How it works…
In the main program, we have defined a list, threading_synchronization_list, of 
thread communication directives that are to be tested:

    lock = threading.Lock()
    rlock = threading.RLock()
    condition = threading.Condition()
    mutex = threading.Semaphore(1)
    threading_synchronization_list = \

      [lock, rlock, condition, mutex]

After defining them, we pass each object in the for cycle:

for statement in threading_synchronization_list :
        t1 = threading.Thread(target=threading_with,  
             args=(statement,))
        t2 = threading.Thread(target=threading_not_with,   
             args=(statement,))

Finally, we have two target functions, in which the threading_with tests the with 
statement:

def threading_with(statement):
    with statement:
        logging.debug('%s acquired via with'  %statement)

There's more…
In the following example we have used the Python support for logging, as we can see:

logging.basicConfig(level=logging.DEBUG,
                   format='(%(threadName)-10s) %(message)s',)

It embeds the thread name in every log message using the formatter code's %(threadName)
s statement. The logging module is thread-safe, so the messages from different threads are 
kept distinct in the output.
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Thread communication using a queue
As discussed earlier, threading can be complicated when threads need to share data or 
resources. As we saw, the Python threading module provides many synchronization primitives, 
including semaphores, condition variables, events, and locks. While these options exist, it 
is considered a best practice to instead concentrate on using the module queue. Queues 
are much easier to deal with and make threaded programming considerably safer, as they 
effectively funnel all access to a resource of a single thread and allow a cleaner and more 
readable design pattern.

We will simply consider these four queue methods:

ff put(): This puts an item in the queue

ff get(): This removes and returns an item from the queue

ff task_done(): This needs to be called each time an item has been processed

ff join(): This blocks until all items have been processed

How to do it…
In this example, we will see how to use the threading module with the queue module. Also, we 
have two entities here that try to share a common resource, a queue. The code is as follows:

from threading import Thread, Event
from queue import Queue
import time
import random

class producer(Thread):
    def __init__(self, queue):
        Thread.__init__(self)
        self.queue = queue
    
    def run(self) :
        for i in range(10):
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            item = random.randint(0, 256)
            self.queue.put(item) 
            print ('Producer notify: item N°%d appended to queue by %s  
                   \n'\
                   % (item, self.name))
            time.sleep(1)
         
          
class consumer(Thread):
    def __init__(self, queue):
        Thread.__init__(self)
        self.queue = queue
    
    def run(self):
        while True:
            item = self.queue.get()
            print ('Consumer notify : %d popped from queue by %s'\
                   % (item, self.name))
            self.queue.task_done()

if __name__ == '__main__':
        queue = Queue()
        t1 = producer(queue)
        t2 = consumer(queue)
        t3 = consumer(queue)
        t4 = consumer(queue)
        t1.start()
        t2.start()
        t3.start()
        t4.start()
        t1.join()
        t2.join()
        t3.join()
        t4.join()
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After running the code, you should have an output similar to this:

How it works…
First, the producer class. We don't need to pass the integers list because we use the queue 
to store the integers that are generated:

class producer(Thread):
    def _init__(self, queue):
        Thread._init__(self)
        self.queue = queue
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The thread in the producer class generates integers and puts them in the queue in a  
for loop:

def run(self) :
        for i in range(100):
            item = random.randint(0, 256)
            self.queue.put(item) 
            

The producer uses Queue.put(item[, block[, timeout]]) to insert data into the 
queue. It has the logic to acquire the lock before inserting data in a queue.

There are two possibilities:

ff If optional args block is true and timeout is None (this is the default case that  
we used in the example), it is necessary for us to block until a free slot is available.  
If timeout is a positive number, it blocks at most timeout seconds and raises the  
full exception if no free slot is available within that time.

ff If the block is false, put an item in the queue if a free slot is immediately available; 
otherwise, raise the full exception (timeout is ignored in this case). Here, put() 
checks whether the queue is full and then calls wait() internally and after this, the 
producer starts waiting.

Next is the consumer class. The thread gets the integer from the queue and indicates that  
it is done working on it using task_done():

def run(self):
        while True:
            item = self.queue.get()
            self.queue.task_done()

The consumer uses Queue.get([block[, timeout]]) and acquires the lock before 
removing data from the queue. If the queue is empty, it puts the consumer in a waiting state.

Finally, in the main, we create the t thread for the producer and three threads, t1, t2, and t3 
for the consumer class:

if __name__ == '__main__':
        queue = Queue()
        t = producer(queue)
        t1 = consumer(queue)
        t2 = consumer(queue)
        t3 = consumer(queue)
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        t.start()
        t1.start()
        t2.start()
        t3.start()

        t.join()
        t1.join()
        t2.join()
        t3.join()

All the operations between the producer class and the consumer class can easily be 
resumed with the following schema:

Producer
Thread

QUEUE

Consumer
Thread 2

Consumer
Thread 2

Consumer
Thread 2

Thread synchronization with the queue module

Evaluating the performance of multithread 
applications

In this recipe, we will verify the impact of the GIL, evaluating the performance of a multithread 
application. The GIL, as described in the previous chapter, is the lock introduced by the 
CPython interpreter. The GIL prevents parallel execution of multiple threads in the interpreter. 
Before being executed each thread must wait for the GIL to release the thread that is running. 
In fact, the interpreter forces the executing thread to acquire the GIL before it accesses 
anything on the interpreter itself as the stack and instances of Python objects. This is precisely 
the purpose of GIL—it prevents concurrent access to Python objects from different threads. 
The GIL then protects the memory of the interpreter and makes the garbage work in the right 
manner. The fact is that the GIL prevents the programmer from improving the performance by 
executing threads in parallel. If we remove the GIL from the CPython interpreter, the threads 
would be executed in parallel. The GIL does not prevent a process from running on a different 
processor, it simply allows only one thread at a time to turn inside the interpreter.
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How to do it…
The next code is a simple tool that is used to evaluate the performance of a multithreaded 
application. Each test calls a function only once in a hundred loop iterations. Then, we will 
see the fastest among the hundred calls. In the for loop, we call the non_threaded and 
threaded functions. Also, we iterate the tests that increase the number of calls and threads. 
We will try with 1, 2, 3, 4, and 8 at the end of calls threads. In the non-threaded execution, 
we simply call the function sequentially the same number of times corresponding to those 
threads that we would use. To keep things simple, all the measurements of the speed of 
execution are provided by the Python's module timer.

This module is designed to evaluate the performance of pieces of Python code, which are 
generally single statements.

The code is as follows:

from threading import Thread
 
class threads_object(Thread):
  def run(self):
    function_to_run()
 
class nothreads_object(object):
  def run(self):
    function_to_run()

def non_threaded(num_iter):
  funcs = []
  for i in range(int(num_iter)):
    funcs.append(nothreads_object())
  for i in funcs:
    i.run()
 
def threaded(num_threads):
  funcs = []
  for i in range(int(num_threads)):
    funcs.append(threads_object())
  for i in funcs:
    i.start()
  for i in funcs:
    i.join()
 
def function_to_run():
    pass
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def show_results(func_name, results):
  print ("%-23s %4.6f seconds" % (func_name, results))
 
if __name__ == "__main__":
   import sys
   from timeit import Timer
 
   repeat = 100
   number = 1
   num_threads = [ 1, 2, 4, 8]

    print ('Starting tests')
   for i in num_threads:
          t = Timer("non_threaded(%s)"\
                       % i, "from __main__ import non_threaded")
          best_result =\
                       min(t.repeat(repeat=repeat, number=number))
          show_results("non_threaded (%s iters)"\
                     % i, best_result)
 
          t = Timer("threaded(%s)"\
                       % i, "from __main__ import threaded")
          best_result = \
                       min(t.repeat(repeat=repeat, number=number))
          show_results("threaded (%s threads)"\
                          % i, best_result) 
     
print ('Iterations complete') 

How it works…
We performed a total of three tests and for each head, we used a different function, changing 
the function code function_to_run() defined in the sample code.

The machine used for these tests is a Core 2 Duo CPU – 2.33Ghz.
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The first test
In this test, we simply evaluate the empty function:

def function_to_run():
    pass

It will show us the overhead associated with each mechanism that we are testing:

If we look at the results, we see how the thread calls are more expensive than the calls 
without threads. In particular, we also note how the cost of adding the thread is proportional 
to their number; in our example, we have four threads with 0.0007143 seconds, while with 
eight threads, we employ 0.001397 seconds.

The second test
A typical example of threaded applications is the processing of numbers. Let's take a simple 
method to calculate the brute force of the Fibonacci sequence; note that there is no sharing of 
the state here, just try to include more tasks that generate sequences of numbers:

def function_to_run():
    a, b = 0, 1
    for i in range(10000):
        a, b = b, a + b
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This is the output:

As we can see from the output, we get no advantage by increasing the number of threads. 
The function is executed in Python and because of the overhead for creating threads and GIL, 
the multithreaded example can never be faster than the non-threaded example. Again, let's 
remember that the GIL allows only one thread at a time to access the interpreter.

The third test
The following test consists in reading 1,000 times a block of data (1Kb) from the test.dat 
file. The function tested is as follows:

def function_to_run():
    fh=open("C:\\CookBookFileExamples\\test.dat","rb")
    size = 1024
    for i in range(1000):
        fh.read(size)
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These are the results of the test:

We have begun to see a better result in the multithreading case. In particular, we've noted 
how the threaded execution is half time-consuming if we compare it with the non_threaded 
one. Let's remember that in real life, we would not use threads as a benchmark. Typically, we 
would put the threads in a queue, pull them out, and perform other tasks. Having multiple 
threads that execute the same function although useful in certain cases, is not a common use 
case for a concurrent program, unless it divides the data in the input.

The fourth test
In the final example, we use urllib.request, a Python module for fetching URL's. This 
module based on the socket module, is written in C and is thread-safe.

The following script tries to get to the https://www.packtpub.com/ main page and simply 
read the first 1k bytes of it:

def function_to_run():
    import urllib.request
    for i in range(10):
        with urllib.request.urlopen("https://www.packtpub.com/")as f:
             f.read(1024)
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The following is the result of the preceding code:

As you can see, during the I/O, the GIL is released. The multithreading execution becomes 
faster than the single-threaded execution. Since many applications perform a certain amount 
of work in the I/O, the GIL does not prevent a programmer from creating a multithreading 
work that concurrently increases the speed of execution.

There's more…
Let's remember that you do not add threads to speed up the startup time of an application, 
but to add support to the concurrence. For example, it's useful to create a pool of threads once 
and then reuse the worker. This allows us to split a big dataset and run the same function on 
different parts (the producer/consumer model). So, although it is not the norm for concurrent 
applications, these tests are designed to be simple. Is the GIL an obstacle for those who work on 
pure Python and try to exploit multi-core hardware architectures? Yes it does. While threads are 
a language construct, the CPython interpreter is the bridge between the threads and operating 
system. This is why Jython, IronPython, and others interpreters do not possess GIL, as it was 
simply not necessary and it has not been reimplemented in the interpreter.



73

3
Process-based 

Parallelism

In this chapter, we will cover the following recipes:

ff Using the multiprocessing Python module

ff How to spawn a process

ff How to name a process

ff How to run a process in the background

ff How to kill a process

ff How to use a process in a subclass

ff How to exchange objects between processes

ff Using a queue to exchange objects

ff Using pipes to exchange objects

ff How to synchronize processes

ff How to manage a state between processes

ff How to use a process pool

ff Using the mpi4py Python module

ff Point-to-point communication

ff Avoiding deadlock problems

ff Collective communication using broadcast

ff Collective communication using a scatter function
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ff Collective communication using a gather function

ff Collective communication using AlltoAll

ff Reduction operation

ff How to optimize the communication

Introduction
In the previous chapter, we saw how to use threads to implement concurrent applications. 
This section will examine the process-based approach. In particular, the focus is on two 
libraries: the Python multiprocessing module and the Python mpi4py module.

The Python multiprocessing library, which is part of the standard library of the language, 
implements the shared memory programming paradigm, that is, the programming of a system 
that consists of one or more processors that have access to a common memory.

The Python library mpi4py implements the programming paradigm called message passing. 
It is expected that there are no shared resources (and this is also called shared nothing) and 
that all communications take place through the messages that are exchanged between the 
processes.

For these features, it is in contrast with the techniques of communication that provide 
memory sharing and the use of lock or similar mechanisms to achieve mutual exclusion.  
In a message passing code, the processes are connected via the communication primitives  
of the types send() and receive().

In the introduction of the Python multiprocessing docs, it is clearly mentioned that all the 
functionality within this package requires the main module to be importable to the children 
(https://docs.python.org/3.3/library/multiprocessing.html).

The __main__ module is not importable to the children in IDLE, even if you run the script 
as a file with IDLE. To get the correct result, we will run all the examples from the Command 
Prompt:

python multiprocessing_example.py

Here, multiprocessing_example.py is the script's name. For the examples described 
in this chapter, we will refer to the Python distribution 3.3 (even though Python 2.7 could be 
used).

https://docs.python.org/3.3/library/multiprocessing.html
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How to spawn a process
The term "spawn" means the creation of a process by a parent process. The parent process 
can of course continue its execution asynchronously or wait until the child process ends its 
execution. The multiprocessing library of Python allows the spawning of a process through the 
following steps:

1.	 Build the object process.

2.	 Call its start() method. This method starts the process's activity.

3.	 Call its join()method. It waits until the process has completed its work and exited.

How to do it...
This example shows you how to create a series (five) of processes. Each process is associated 
with the function foo(i), where i is the ID associated with the process that contains it:

#Spawn a Process: Chapter 3: Process Based Parallelism
import multiprocessing

def foo(i):
    print ('called function in process: %s' %i)
    return

if __name__ == '__main__':
    Process_jobs = []
    for i in range(5):
        p = multiprocessing.Process(target=foo, args=(i,))
        Process_jobs.append(p)
        p.start()
        p.join()

To run the process and display the results, let's open the Command Prompt, preferably in 
the folder containing the example file (named spawn_a_process.py), and then type the 
following command:

python spawn_a_process.py
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We obtain the following output using this command:

C:\Python CookBook\ Chapter 3 - Process Based Parallelism\Example Codes 
Chapter 3>python spawn_a_process.py

called function in process: 0

called function in process: 1

called function in process: 2

called function in process: 3

called function in process: 4

How it works...
As explained in the introduction section of this recipe, to create the object process, we must 
first import the multiprocessing module with the following command:

import multiprocessing

Then, we create the object process in the main program:

p = multiprocessing.Process(target=foo, args=(i,))

Further, we call the start() method:

p.start()

The object process has for argument the function to which the child process is associated  
(in our case, the function is called foo()). We also pass an argument to the function that 
takes into account the process in which the associated function is situated. Finally, we call  
the join() method on the process created:

p.join()

Without p.join(), the child process will sit idle and not be terminated, and then, you must 
manually kill it.

There's more...
This reminds us once again of the importance of instantiating the Process object within the 
main section:

if __name__ == '__main__':
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This is because the child process created imports the script file where the target function is 
contained. Then, by instantiating the process object within this block, we prevent an infinite 
recursive call of such instantiations. A valid workaround is used to define the target function 
in a different script, and then imports it to the namespace. So for our first example, we could 
have:

import multiprocessing
import target_function

if __name__ == '__main__':
    Process_jobs = []
    for i in range(5):
        p = multiprocessing.Process   \
            (target=target_function.function,args=(i,))
         Process_jobs.append(p)
         p.start()
         p.join()

Here, target_function.py is as shown:

#target_function.py

def function(i):
    print ('called function in process: %s' %i)
    return

The output is always similar to that shown in the preceding example.

How to name a process
In the previous example, we identified the processes and how to pass a variable to the target 
function. However, it is very useful to associate a name to the processes as debugging an 
application requires the processes to be well marked and identifiable.

How to do it...
The procedure to name a process is similar to that described for the threading library (see the 
recipe How to determine the current thread in Chapter 2, Thread-based Parallelism, of the 
present book.)
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In the main program, we create a process with a name and a process without a name. Here, 
the common target is the foo()function:

#Naming a Process: Chapter 3: Process Based Parallelism
import multiprocessing
import time

def foo():
    name = multiprocessing.current_process().name
    print ("Starting %s \n" %name)
    time.sleep(3)
    print ("Exiting %s \n" %name)

if __name__ == '__main__':
    process_with_name = \
                      multiprocessing.Process\
                      (name='foo_process',\
                       target=foo)
    process_with_name.daemon = True
    process_with_default_name = \
                              multiprocessing.Process\
                              (target=foo)
    process_with_name.start()
    process_with_default_name.start()

To run the process, open the Command Prompt and type the following command:

python naming_process.py

This is the result that we get after using the preceding command:

C:\Python CookBook\Chapter 3 - Process Based Parallelism\Example Codes 
Chapter 3>python naming_process.py

Starting foo_process

Starting Process-2

Exiting foo_process

Exiting Process-2
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How it works...
The operation is similar to the procedure used for naming a thread. To name a process, we 
should provide an argument with the object's name:

process_with_name = multiprocessing.Process
          (name='foo_function', target=foo)

In this case, we called the foo_function process. If the process child wants to know which 
its parent process is, it must use the following statement:

name = multiprocessing.current_process().name

This statement will provide the name of the parent process.

How to run a process in the background
Running a process in background is a typical mode of execution of laborious processes 
that do not require your presence or intervention, and this course may be concurrent to the 
execution of other programs. The Python multiprocessing module allows us, through the 
daemonic option, to run background processes.

How to do it...
To run a background process, simply follow the given code:

import multiprocessing
import time

def foo():
    name = multiprocessing.current_process().name
    print ("Starting %s \n" %name)
    time.sleep(3)
    print ("Exiting %s \n" %name)
    

if __name__ == '__main__':
    background_process = multiprocessing.Process\
                         (name='background_process',\
                          target=foo)
    background_process.daemon = True
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    NO_background_process = multiprocessing.Process\
                           (name='NO_background_process',\
                            target=foo)
    
    NO_background_process.daemon = False
    
    background_process.start()
    NO_background_process.start()

To run the script from the Command Prompt, type the following command:

python background_process.py

The final output of this command is as follows:

C:\Python CookBook\ Chapter 3 - Process Based Parallelism\Example Codes 
Chapter 3>python background_process.py

Starting NO_background_process

Exiting NO_background_process

How it works...
To execute the process in background, we set the daemon parameter:

background_process.daemon = True

The processes in the no-background mode have an output, so the daemonic process ends 
automatically after the main program ends to avoid the persistence of running processes.

There's more...
Note that a daemonic process is not allowed to create child processes. Otherwise, a daemonic 
process would leave its children orphaned if it gets terminated when its parent process exits. 
Additionally, these are not Unix daemons or services, they are normal processes that will be 
terminated (and not joined) if non-daemonic processes have exited.
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How to kill a process
It's possible to kill a process immediately using the terminate() method. Also, we use the 
is_alive() method to keep track of whether the process is alive or not.

How to do it...
In this example, a process is created with the target function foo(). After the start, we kill it 
with the terminate() function:

#kill a Process: Chapter 3: Process Based Parallelism
import multiprocessing
import time

def foo():
    print ('Starting function')
    time.sleep(0.1)
    print ('Finished function')

if __name__ == '__main__':
    p = multiprocessing.Process(target=foo)
    print ('Process before execution:', p, p.is_alive())
    p.start()
    print ('Process running:', p, p.is_alive())
    p.terminate()
    print ('Process terminated:', p, p.is_alive())
    p.join()
    print ('Process joined:', p, p.is_alive())
    print ('Process exit code:', p.exitcode)
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The following is the output we get when we use the preceding command:

How it works...
We create the process and then monitor its lifetime by the is_alive()method. Then, we 
finish it with a call to terminate():

p.terminate()

Finally, we verify the status code when the process is finished, and read the attribute of the 
ExitCode process. The possible values of ExitCode are, as follows:

ff == 0: This means that no error was produced

ff > 0: This means that the process had an error and exited that code

ff < 0: This means that the process was killed with a signal of -1 * ExitCode

For our example, the output value of the ExitCode code is equal to -15. The negative value 
-15 indicates that the child was terminated by an interrupt signal identified by the number 15.

How to use a process in a subclass
To implement a custom subclass and process, we must:

ff Define a new subclass of the Process class

ff Override the _init__(self [,args]) method to add additional arguments

ff Override the run(self [,args]) method to implement what Process should 
when it is started

Once you have created the new Process subclass, you can create an instance of it and then 
start by invoking the start() method, which will in turn call the run() method.
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How to do it...
We will rewrite the first example in this manner:

#Using a process in a subclass Chapter 3: Process Based #Parallelism

import multiprocessing

class MyProcess(multiprocessing.Process):
    def run(self):
        print ('called run method in process: %s' %self.name)
        return

if __name__ == '__main__':
    jobs = []
    for i in range(5):
        p = MyProcess ()
        jobs.append(p)
        p.start()
        p.join()

To run the script from the Command Prompt, type the following command:

python subclass_process.py

The result of the preceding command is as follows:

C:\Python CookBook\Chapter 3 - Process Based Parallelism\Example Codes 
Chapter 3>python subclass_process.py

called run method in process: MyProcess-1

called run method in process: MyProcess-2

called run method in process: MyProcess-3

called run method in process: MyProcess-4

called run method in process: MyProcess-5

How it works...
Each Process subclass could be represented by a class that extends the Process class and 
overrides its run() method. This method is the starting point of Process:

class MyProcess (multiprocessing.Process):
    def run(self):
        print ('called run method in process: %s' %self.name)
        return
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In the main program, we create several objects of the type MyProcess(). The execution of 
the thread begins when the start() method is called:

p = MyProcess()
p.start()

The join() command just handles the termination of processes.

How to exchange objects between 
processes

The development of parallel applications has the need for the exchange of data between 
processes. The multiprocessing library has two communication channels with which it can 
manage the exchange of objects: queues and pipes.

Communication
Channels

QUEUES PIPES

Communication channels in the multiprocessing module

Using queue to exchange objects
As explained before, it is possible for us to share data with the queue data structure.

A queue returns a process shared queue, is thread and process safe, and any serializable 
object (Python serializes an object using the pickable module) can be exchanged through it.
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How to do it...
In the following example, we show you how to use a queue for a producer-consumer problem. 
The producer class creates the item and queues and then, the consumer class provides  
the facility to remove the inserted item:

import multiprocessing
import random
import time

class producer(multiprocessing.Process):
    def __init__(self, queue):
        multiprocessing.Process.__init__(self)
        self.queue = queue

    def run(self) :
        for i in range(10):
            item = random.randint(0, 256)
            self.queue.put(item) 
            print ("Process Producer : item %d appended to queue %s"\
                   % (item,self.name))
            time.sleep(1)
            print ("The size of queue is %s"\
                   % self.queue.qsize())
       
class consumer(multiprocessing.Process):
    def __init__(self, queue):
        multiprocessing.Process.__init__(self)
        self.queue = queue

    def run(self):
        while True:
            if (self.queue.empty()):
                print("the queue is empty")
                break
            else :
                time.sleep(2)
                item = self.queue.get()
                print ('Process Consumer : item %d popped from by %s \n'\
                       % (item, self.name))
                time.sleep(1)
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if __name__ == '__main__':
        queue = multiprocessing.Queue()
        process_producer = producer(queue)
        process_consumer = consumer(queue)
        process_producer.start()
        process_consumer.start()
        process_producer.join()
        process_consumer.join()

This is the output that we get after the execution:

C:\Python CookBook\Chapter 3 - Process Based Parallelism\Example Codes 
Chapter 3>python using_queue.py

Process Producer : item 69 appended to queue producer-1

The size of queue is 1

Process Producer : item 168 appended to queue producer-1

The size of queue is 2

Process Consumer : item 69 popped from by consumer-2

Process Producer : item 235 appended to queue producer-1

The size of queue is 2

Process Producer : item 152 appended to queue producer-1

The size of queue is 3

Process Producer : item 213 appended to queue producer-1

Process Consumer : item 168 popped from by consumer-2

The size of queue is 3

Process Producer : item 35 appended to queue producer-1

The size of queue is 4

Process Producer : item 218 appended to queue producer-1

The size of queue is 5

Process Producer : item 175 appended to queue producer-1

Process Consumer : item 235 popped from by consumer-2

The size of queue is 5

Process Producer : item 140 appended to queue producer-1

The size of queue is 6

Process Producer : item 241 appended to queue producer-1

The size of queue is 7

Process Consumer : item 152 popped from by consumer-2

Process Consumer : item 213 popped from by consumer-2



Chapter 3

87

Process Consumer : item 35 popped from by consumer-2

Process Consumer : item 218 popped from by consumer-2

Process Consumer : item 175 popped from by consumer-2

Process Consumer : item 140 popped from by consumer-2

Process Consumer : item 241 popped from by consumer-2

the queue is empty

How it works...
The multiprocessing class has its Queue object instantiated in the main program:

if __name__ == '__main__':
       queue = multiprocessing.Queue()

Then, we create the two processes, producer and consumer, with the Queue object as an 
attribute:

        process_producer = producer(queue)
        process_consumer = consumer(queue)

The process producer is responsible for entering 10 items in the queue using its put() 
method:

for i in range(10):
            item = random.randint(0, 256)
            self.queue.put(item)

The process consumer has the task of removing the items from the queue (using the get 
method) and verifying that the queue is not empty. If this happens, the flow inside the while 
loop ends with a break statement:

def run(self):
        while True:
            if (self.queue.empty()):
                print("the queue is empty")
                break
            else :
                time.sleep(2)
                item = self.queue.get()
                print ('Process Consumer : item %d popped from by %s 
\n'\
                       % (item, self.name))
                time.sleep(1)
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There's more...
A queue has the JoinaleQueue subclass. It has the following two additional methods:

ff task_done(): This indicates that a task is complete, for example, after the get()
method is used to fetch items from the queue. So, it must be used only by queue 
consumers.

ff join(): This blocks the processes until all the items in the queue have been 
achieved and processed.

Using pipes to exchange objects
The second communication channel is the pipe data structure.

A pipe does the following:

ff Returns a pair of connection objects connected by a pipe

ff In this, every object has send/receive methods to communicate between processes

How to do it...
Here is a simple example with pipes. We have one process pipe the gives out numbers from  
0 to 9 and another process that takes the numbers and squares them:

import multiprocessing 
 
 
def create_items(pipe):
    output_pipe, _ = pipe
    for item in range(10):
        output_pipe.send(item)
    output_pipe.close()
 
def multiply_items(pipe_1, pipe_2):
    close, input_pipe = pipe_1
    close.close()
    output_pipe, _ = pipe_2
    try:
        while True:
            item = input_pipe.recv()
            output_pipe.send(item * item)
    except EOFError:
        output_pipe.close()
 



Chapter 3

89

if __name__== '__main__':

#First process pipe with numbers from 0 to 9
    pipe_1 = multiprocessing.Pipe(True)
    process_pipe_1 = \
                   multiprocessing.Process\
                   (target=create_items, args=(pipe_1,))
    process_pipe_1.start()

#second pipe,
    pipe_2 = multiprocessing.Pipe(True)
    process_pipe_2 = \
                   multiprocessing.Process\
                   (target=multiply_items, args=(pipe_1, pipe_2,))
    process_pipe_2.start()
 
    pipe_1[0].close()
    pipe_2[0].close()

    try:
        while True:
            
            print (pipe_2[1].recv())
    except EOFError:
        print("End")

The output obtained is as follows:
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How it works...
Let's remember that the pipe()function returns a pair of connection objects connected by a 
two way pipe. In the example, out_pipe contains the numbers from 0 to 9, generated by the 
target function create_items():

def create_items(pipe):
    output_pipe, _ = pipe
    for item in range(10):
        output_pipe.send(item)
    output_pipe.close()

In the second process, we have two pipes: the input pipe and final output pipe that contains 
the results:

process_pipe_2 = multiprocessing.Process(target=multiply_items,   
                     args=(pipe_1, pipe_2,))

These are finally printed as:

try:
        while True:
           print (pipe_2[1].recv())
except EOFError:
        print ("End")

How to synchronize processes
Multiple processes can work together to perform a given task. Usually, they share data. It is 
important that the access to shared data by various processes does not produce inconsistent 
data. Processes that cooperate by sharing data must therefore act in an orderly manner in 
order to access that data. Synchronization primitives are quite similar to those encountered 
for the library and threading.

They are as follows:

ff Lock: This object can be in one of the states: locked and unlocked. A lock object 
has two methods, acquire() and release(), to manage the access to a shared 
resource.

ff Event: This realizes simple communication between processes, one process signals 
an event and the other processes wait for it. An Event object has two methods, 
set() and clear(), to manage its own internal flag.

ff Condition: This object is used to synchronize parts of a workflow, in sequential or 
parallel processes. It has two basic methods, wait() is used to wait for a condition 
and notify_all() is used to communicate the condition that was applied.
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ff Semaphore: This is used to share a common resource, for example, to support a fixed 
number of simultaneous connections.

ff RLock: This defines the recursive lock object. The methods and functionality for 
RLock are the same as the Threading module.

ff Barrier: This divides a program into phases as it requires all of the processes to 
reach it before any of them proceeds. Code that is executed after a barrier cannot  
be concurrent with the code executed before the barrier.

How to do it...
The example here shows the use of barrier() to synchronize two processes. We have 
four processes, wherein process1 and process2 are managed by a barrier statement, while 
process3 and process4 have no synchronizations directives:

import multiprocessing
from multiprocessing import Barrier, Lock, Process
from time import time
from datetime import datetime

def test_with_barrier(synchronizer, serializer):
    name = multiprocessing.current_process().name
    synchronizer.wait()
    now = time()
    with serializer:
        print("process %s ----> %s" \
              %(name,datetime.fromtimestamp(now)))

def test_without_barrier():
    name = multiprocessing.current_process().name
    now = time()
    print("process %s ----> %s" \
          %(name ,datetime.fromtimestamp(now)))

if __name__ == '__main__':
    synchronizer = Barrier(2)
    serializer = Lock()
    Process(name='p1 - test_with_barrier'\
            ,target=test_with_barrier,\
            args=(synchronizer,serializer)).start()
    Process(name='p2 - test_with_barrier'\
            ,target=test_with_barrier,\
            args=(synchronizer,serializer)).start()
    Process(name='p3 - test_without_barrier'\
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            ,target=test_without_barrier).start()
    Process(name='p4 - test_without_barrier'\
            ,target=test_without_barrier).start()

By running the script, we can see that process1 and process2 print out the same timestamps:

C:\Python CookBook\Chapter 3 - Process Based Parallelism\Example Codes 
Chapter 3>python process_barrier.py

process p1 - test_with_barrier ----> 2015-05-09 11:11:33.291229

process p2 - test_with_barrier ----> 2015-05-09 11:11:33.291229

process p3 - test_without_barrier ----> 2015-05-09 11:11:33.310230

process p4 - test_without_barrier ----> 2015-05-09 11:11:33.333231

How it works...
In the main program, we created four processes; however, we also need a barrier and lock 
primitive. The parameter 2 in the barrier statement stands for the total number of process 
that are to be managed:

if __name__ == '__main__':
    synchronizer = Barrier(2)
    serializer = Lock()
    Process(name='p1 - test_with_barrier'\
            ,target=test_with_barrier,\
            args=(synchronizer,serializer)).start()
    Process(name='p2 - test_with_barrier'\
            ,target=test_with_barrier,\
            args=(synchronizer,serializer)).start()

The test_with_barrier_function executes the barrier's wait()method:

def test_with_barrier(synchronizer, serializer):
    name = multiprocessing.current_process().name
    synchronizer.wait()

When the two processes have called the wait() method, they are released simultaneously:

    now = time()
    with serializer:
        print("process %s ----> %s" %(name \  
              ,datetime.fromtimestamp(now)))
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The following figure shows you how a barrier works with the two processes:

Process P1

Process P2

Process P2Process P1

Process P1 Process P2

Barrier

Barrier

Barrier

The two Process
are executed

Process P2 reaches the Barrier, it
sends a signal to Process P1, and
blocks until P1 reaches the Barrier.

All the Processes are arrived at the
Barrier. They access to their shared
resources to update their local data
and keep on executing.

Process management with a barrier

How to manage a state between processes
Python multiprocessing provides a manager to coordinate shared information between all its 
users. A manager object controls a server process that holds Python objects and allows other 
processes to manipulate them.

A manager has the following properties:

ff It controls the server process that manages a shared object

ff It makes sure the shared object gets updated in all processes when anyone  
modifies it
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How to do it...
Let's see an example of how to share a state between processes:

1.	 First, the program creates a manager list, shares it between n number of 
taskWorkers, and every worker updates an index.

2.	 After all workers finish, the new list is printed to stdout:

import multiprocessing

def worker(dictionary, key, item):
    dictionary[key] = item

if __name__ == '__main__':
    mgr = multiprocessing.Manager()
    dictionary = mgr.dict()
    jobs = [ multiprocessing.Process\
             (target=worker, args=(dictionary, i, i*2))
             for i in range(10) 
             ]
    for j in jobs:
        j.start()
    for j in jobs:
        j.join()
    print ('Results:', dictionary)

The output is as follows:

C:\Python CookBook\Chapter 3 - Process Based Parallelism\Example Codes 
Chapter 3>python manager.py

key = 0 value = 0

key = 2 value = 4

key = 6 value = 12

key = 4 value = 8

key = 8 value = 16

key = 7 value = 14

key = 3 value = 6

key = 1 value = 2

key = 5 value = 10

key = 9 value = 18

Results: {0: 0, 1: 2, 2: 4, 3: 6, 4: 8, 5: 10, 6: 12, 7: 14, 8: 16, 9: 
18}
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How it works...
We declare the manager with the following statement:

mgr = multiprocessing.Manager()

In the next statement, a data structure of the type dictionary is created:

dictionary = mgr.dict()

Then, the multiprocess is launched:

jobs = [multiprocessing.Process \            
        (target=taskWorker,args=(dictionary,i,i*2)) 
        for i in range(10)
       ]

for j in jobs:
        j.start()

Here, the target function taskWorker adds an item to the data structure dictionary:

def taskWorker(dictionary, key, item):
    dictionary[key] = value

Finally, we get the output and all the dictionaries are printed out:

for j in jobs:
        j.join()
    print ('Results:', d)

How to use a process pool
The multiprocessing library provides the Pool class for simple parallel processing tasks. The 
Pool class has the following methods:

ff apply(): It blocks until the result is ready.

ff apply_async(): This is a variant of the apply() method, which returns a result 
object. It is an asynchronous operation that will not lock the main thread until all the 
child classes are executed.

ff map(): This is the parallel equivalent of the map() built-in function. It blocks until 
the result is ready, this method chops the iterable data in a number of chunks that 
submits to the process pool as separate tasks.
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ff map_async(): This is a variant of the map() method, which returns a result object. 
If a callback is specified, then it should be callable, which accepts a single argument. 
When the result becomes ready, a callback is applied to it (unless the call failed). A 
callback should be completed immediately; otherwise, the thread that handles the 
results will get blocked.

How to do it…
This example shows you how to implement a process pool to perform a parallel application. 
We create a pool of four processes and then we use the pool's map method to perform a 
simple calculation:

def function_square(data):
    result = data*data
    return result

if __name__ == '__main__':
    inputs = list(range(100))
    pool = multiprocessing.Pool(processes=4)
    pool_outputs = pool.map(function_square, inputs)
    pool.close() 
    pool.join()  
    print ('Pool    :', pool_outputs)

This is the result that we get after completing the calculation:

C:\Python CookBook\Chapter 3 - Process Based Parallelism\Example Codes 
Chapter 3>\python process_pool.py

Pool    : [0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 
225, 256, 289, 324, 361, 400, 441, 484, 529, 576, 625, 676, 729, 784, 
841, 900, 961, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 
1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500, 2601, 2704, 
2809, 2916, 3025, 3136, 3249, 3364, 3481, 3600, 3721, 3844, 3969, 4096, 
4225, 4356, 4489, 4624, 4761, 4900, 5041, 5184, 5329, 5476, 5625, 5776, 
5929, 6084, 6241, 6400, 6561, 6724, 6889, 7056, 7225, 7396, 7569, 7744, 
7921, 8100, 8281, 8464, 8649, 8836, 9025, 9216, 9409, 9604, 9801]
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How it works…
The multiprocessing.Pool method applies function_square to the input element to 
perform a simple calculation. The total number of parallel processes is four:

      pool = multiprocessing.Pool(processes=4)

The pool.map method submits to the process pool as separate tasks

pool_outputs = pool.map(function_square, inputs)

The parameter inputs is a list of integer from 0 to 100:

inputs = list(range(100))

The result of the calculation is stored in pool_outputs. Then, the final result is printed:

print ('Pool    :', pool_outputs)

It is important to note that the result of the pool.map() method is equivalent to Python's 
built-in function map(), except that the processes run parallelly.

Using the mpi4py Python module
The Python programming language provides a number of MPI modules to write parallel 
programs. The most interesting of these is the mpi4py library. It is constructed on top of the 
MPI-1/2 specifications and provides an object-oriented interface, which closely follows MPI-2 
C++ bindings. A C MPI user could use this module without learning a new interface. Therefore, 
it is widely used as an almost full package of an MPI library in Python.

The main applications of the module, which will be described in this chapter, are:

ff Point-to-point communication

ff Collective communication

ff Topologies
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Getting ready
The installation procedure of mpi4py using a Windows machine is, as follows (for other OS, 
refer to http://mpi4py.scipy.org/docs/usrman/install.html#):

1.	 Download the MPI software library mpich  
from http://www.mpich.org/downloads/.

The MPICH download page

2.	 Open an admin Command Prompt by right-clicking on the command prompt icon and 
select Run as administrator.

3.	 Run msiexec /i mpich_installation_file.msi from the admin Command 
Prompt to install MPICH2.

4.	 During the installation, select the option that installs MPICH2 for all users.

5.	 Run wmpiconfig and store the username/password. Use your real Windows login 
name and password.

6.	 Add C:\Program Files\MPICH2\bin to the system path—no need to reboot the 
machine.

7.	 Check smpd using smpd -status. It should return smpd running on 
$hostname$.

8.	 To test the execution environment, go to the $MPICHROOT\examples directory and 
run cpi.exe using mpiexec -n 4 cpi.

http://mpi4py.scipy.org/docs/usrman/install.html#
http://www.mpich.org/downloads/
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9.	 Download the Python installer pip from https://pip.pypa.io/en/stable/
installing.html.

It will create a pip.exe file in the Scripts directory of your Python distribution.

The PIP download page

10.	 Then, from the Command Prompt, type the following to install mpi4py:

C:> pip install mpi4py

How to do it…
Let's start our journey to the MPI library by examining the classic code or a program that prints 
the phrase "Hello, world!" on each process that is instantiated:

#hello.py
from mpi4py import MPI
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
print ("hello world from process ", rank) 

To execute the code, type the following command line:

C:> mpiexec  -n 5 python  helloWorld_MPI.py

https://pip.pypa.io/en/stable/installing.html
https://pip.pypa.io/en/stable/installing.html
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This is the result that we would get after we execute this code:

('hello world from process ', 1)

('hello world from process ', 0)

('hello world from process ', 2)

('hello world from process ', 3)

('hello world from process ', 4)

How it works…
In MPI, the processes involved in the execution of a parallel program are identified by a 
sequence of non-negative integers called ranks. If we have a number p of processes that runs 
a program, the processes will then have a rank that goes from 0 to p-1. The function MPI that 
comes to us to solve this problem has the following function calls:

rank = comm.Get_rank()

This function returns the rank of the process that called it. The comm argument is called a 
communicator, as it defines its own set of all processes that can communicate together, 
namely:

comm = MPI.COMM_WORLD

P0

P2

P3

P4

P5

An example of communication between processes in MPI.COMM_WORLD

There's more…
It should be noted that, for illustration purposes only, the stdout output will not always 
be ordered, as multiple processes can apply at the same time by writing on the screen 
and the operating system arbitrarily chooses the order. So, we are ready for a fundamental 
observation: every process involved in the execution of MPI runs the same compiled binary,  
so each process receives the same instructions to be executed.
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Point-to-point communication
One of the most important features among those provided by MPI is the point-to-point 
communication, which is a mechanism that enables data transmission between two 
processes: a process receiver, and process sender.

The Python module mpi4py enables point-to-point communication via two functions:

ff Comm.Send(data, process_destination): This sends data to the destination 
process identified by its rank in the communicator group

ff Comm.Recv(process_source): This receives data from the source process, which 
is also identified by its rank in the communicator group

The Comm parameter, which stands for communicator, defines the group of processes, that 
may communicate through message passing:

comm = MPI.COMM_WORLD

How to do it…
In the following example, we show you how to utilize the comm.send and comm.recv 
directives to exchange messages between different processes:

from mpi4py import MPI

comm=MPI.COMM_WORLD
rank = comm.rank
print("my rank is : " , rank)

if rank==0:
    data= 10000000
    destination_process = 4
    comm.send(data,dest=destination_process)
    print ("sending data %s " %data + \ 
           "to process %d" %destination_process)
   
if rank==1:
    destination_process = 8
    data= "hello"
    comm.send(data,dest=destination_process)
    print ("sending data %s :" %data + \ 
           "to process %d" %destination_process)
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if rank==4:
    data=comm.recv(source=0)
    print ("data received is = %s" %data)
    
    
if rank==8:
    data1=comm.recv(source=1)
    print ("data1 received is = %s" %data1)

To run the script, type the following:

C:\>mpiexec -n 9 python pointToPointCommunication.py

This is the output that you'll get after you run the script:

('my rank is : ', 5)

('my rank is : ', 1)

sending data hello :to process 8

('my rank is : ', 3)

('my rank is : ', 0)

sending data 10000000 to process 4

('my rank is : ', 2)

('my rank is : ', 7)

('my rank is : ', 4)

data received is = 10000000

('my rank is : ', 8)

data1 received is = hello

('my rank is : ', 6)

How it works…
We ran the example with a total number of processes equal to nine. So in the communicator 
group, comm, we have nine tasks that can communicate with each other:

comm=MPI.COMM_WORLD

Also, to identify a task or processes inside the group, we use their rank value:

rank = comm.rank

We have two sender processes and two receiver processes.
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The process of a rank equal to zero sends numerical data to the receiver process of a rank 
equal to four:

if rank==0:
    data= 10000000
    destination_process = 4
    comm.send(data,dest=destination_process)

Similarly, we must specify the receiver process of rank equal to four. Also, we note that the 
comm.recv statement must contain as an argument, the rank of the sender process:

…
if rank==4:
    data=comm.recv(source=0)

For the other sender and receiver processes, the process of a rank equal to one and the 
process of a rank equal to eight, respectively, the situation is the same but the only difference 
is the type of data. In this case, for the sender process, we have a string that is to be sent:

if rank==1:
    destination_process = 8
    data= "hello"
    comm.send(data,dest=destination_process)

For the receiver process of a rank equal to eight, the rank of the sender process is pointed out:

if rank==8:
    data1=comm.recv(source=1)

The following figure summarizes the point-to-point communication protocol in mpi4py:

send Request to send

Permission to send

receive

sender receiver

DATA

The send/receive transmission protocol
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It is a two-step process, consisting of sending some data from one task (sender) and of 
receiving these data by another task (receiver). The sending task must specify the data to be 
sent and their destination (the receiver process), while the receiving task has to specify the 
source of the message to be received.

There's more…
The comm.send() and comm.recv() functions are blocking functions; they block the caller 
until the buffered data involved can safely be used. Also in MPI, there are two management 
methods of sending and receiving messages:

ff The buffered mode

ff The synchronous mode

In the buffered mode, the flow control returns to the program as soon as the data to be sent 
has been copied to a buffer. This does not mean that the message is sent or received. In 
the synchronous mode, however, the function only gets terminated when the corresponding 
receive function begins receiving the message.

Avoiding deadlock problems
A common problem we face is that of the deadlock. This is a situation where two (or more) 
processes block each other and wait for the other to perform a certain action that serves 
to another, and vice versa. The mpi4py module doesn't provide any specific functionality to 
resolve this but only some measures, which the developer must follow to avoid problems of 
deadlock.

How to do it…
Let's first analyze the following Python code, which will introduce a typical deadlock problem; 
we have two processes, rank equal to one and rank equal to five, that communicate which 
each other and both have the data sender and data receiver functionality:

from mpi4py import MPI

comm=MPI.COMM_WORLD
rank = comm.rank
print("my rank is : " , rank)
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if rank==1:
    data_send= "a"
    destination_process = 5
    source_process = 5

    data_received=comm.recv(source=source_process)
    comm.send(data_send,dest=destination_process)
    
    print ("sending data %s " %data_send + \
           "to process %d" %destination_process)
    print ("data received is = %s" %data_received)

     
if rank==5:
    data_send= "b"
    destination_process = 1
    source_process = 1

    comm.send(data_send,dest=destination_process)
    data_received=comm.recv(source=source_process)
    

    print ("sending data %s :" %data_send + \
           "to process %d" %destination_process)
 print ("data received is = %s" %data_received)

How it works…
If we try to run this program (it makes sense to execute it with only two processes), we note 
that none of the two processes are able to proceed:

C:\>mpiexec -n 9 python deadLockProblems.py

('my rank is : ', 8)

('my rank is : ', 3)

('my rank is : ', 2)

('my rank is : ', 7)

('my rank is : ', 0)

('my rank is : ', 4)

('my rank is : ', 6)
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Both prepare to receive a message from the other and get stuck there. This happens because 
the function MPI comm.recv() as well as the comm.send()MPI blocks them. It means that 
the calling process waits for their completion. As for the comm.send() MPI, the completion 
occurs when the data has been sent and may be overwritten without modifying the message. 
The completion of the comm.recv()MPI, instead, is when the data has been received and 
can be used. To solve the problem, the first idea that occurs is to invert the comm.recv() 
MPI with the comm.send() MPI in this way:

if rank==1:
    data_send= "a"
    destination_process = 5
    source_process = 5
    comm.send(data_send,dest=destination_process)
    data_received=comm.recv(source=source_process)
    
if rank==5:
    data_send= "b"
    destination_process = 1
    source_process = 1
    data_received=comm.recv(source=source_process)
    comm.send(data_send,dest=destination_process)

This solution, however, even if correct from the logical point of view, not always ensures the 
avoidance of a deadlock. Since the communication is carried out through a buffer, where the 
comm.send() MPI copies the data to be sent, the program runs smoothly only if this buffer 
is able to hold them all. Otherwise, there is a deadlock: the sender cannot finish sending 
data because the buffer is committed and the receiver cannot receive data as it is blocked 
by a comm.send() MPI, which is not yet complete. At this point, the solution that allows us 
to avoid deadlocks is used to swap the sending and receiving functions so as to make them 
asymmetrical:

if rank==1:
    data_send= "a"
    destination_process = 5
    source_process = 5
    comm.send(data_send,dest=destination_process)
    data_received=comm.recv(source=source_process)
             
if rank==5:
    data_send= "b"
    destination_process = 1
    source_process = 1
    comm.send(data_send,dest=destination_process)
    data_received=comm.recv(source=source_process)
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Finally, we get the correct output:

C:\>mpiexec -n 9 python deadLockProblems.py

('my rank is : ', 7)

('my rank is : ', 0)

('my rank is : ', 8)

('my rank is : ', 1)

sending data a to process 5

data received is = b

('my rank is : ', 5)

sending data b :to process 1

data received is = a

('my rank is : ', 2)

('my rank is : ', 3)

('my rank is : ', 4)

('my rank is : ', 6)

There's more…
The solution to the deadlock is not the only solution. There is, for example, a particular 
function that unifies the single call that sends a message to a given process and receives 
another message that comes from another process. This function is called Sendrecv:

Sendrecv(self, sendbuf, int dest=0, int sendtag=0, recvbuf=None, int 
source=0, int recvtag=0, Status status=None)

As you can see, the required parameters are the same as the comm.send() MPI and the 
comm.recv() MPI. Also, in this case, the function blocks, but compared to the two already 
seen previously it offers the advantage of leaving the communication subsystem responsible 
for checking the dependencies between sending and receiving, thus avoiding the deadlock. In 
this way the code of the previous example becomes as shown:

if rank==1:
    data_send= "a"
    destination_process = 5
    source_process = 5
    data_received=comm.sendrecv(data_send,dest=destination_process,
                                source =source_process)
if rank==5:
    data_send= "b"
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    destination_process = 1
    source_process = 1
    data_received=comm.sendrecv(data_send,dest=destination_process,
                                source=source_process)

Collective communication using broadcast
During the development of a parallel code, we often find ourselves in the situation where we 
have to share between multiple processes the value of a certain variable at runtime or certain 
operations on variables that each process provides (presumably with different values).

To resolve this type of situations, the communication trees are used (for example the process 
0 sends data to the processes 1 and 2, which respectively will take care of sending them to 
the processes 3, 4, 5, and 6, and so on).

Instead, MPI libraries provide functions ideal for the exchange of information or the use of 
multiple processes that are clearly optimized for the machine in which they are performed.

1 2 3 4

0

Broadcasting data from process 0 to processes 1, 2, 3, and 4

A communication method that involves all the processes belonging to a communicator is 
called a collective communication. Consequently, a collective communication generally 
involves more than two processes. However, instead of this, we will call the collective 
communication broadcast, wherein a single process sends the same data to any other 
process. The mpi4py functionalities in the broadcast are offered by the following method:

buf = comm.bcast(data_to_share, rank_of_root_process)

This function simply sends the information contained in the message process root to every 
other process that belongs to the comm communicator; each process must, however, call it by 
the same values of root and comm.
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How to do it…
Let's now see an example wherein we've used the broadcast function. We have a root process 
of rank equal to zero that shares its own data, variable_to_share, with the other 
processes defined in the communicator group:

from mpi4py import MPI

comm = MPI.COMM_WORLD
rank = comm.Get_rank()

if rank == 0:
   variable_to_share = 100 
           
else:
   variable_to_share = None

variable_to_share = comm.bcast(variable_to_share, root=0)
print("process = %d" %rank + " variable shared  = %d " \  
                     %variable_to_share)

The output obtained with a communicator group of ten processes is:

C:\>mpiexec -n 10 python broadcast.py

process = 0 variable shared  = 100

process = 8 variable shared  = 100

process = 2 variable shared  = 100

process = 3 variable shared  = 100

process = 4 variable shared  = 100

process = 5 variable shared  = 100

process = 9 variable shared  = 100

process = 6 variable shared  = 100

process = 1 variable shared  = 100

process = 7 variable shared  = 100

How it works…
The process root of rank zero instantiates a variable, variabile_to_share, equal to 100. 
This variable will be shared with the other processes of the communication group:

if rank == 0:
   variable_to_share = 100 
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To perform this, we also introduce the broadcasting communication statement:

variable_to_share = comm.bcast(variable_to_share, root=0)

Here, the parameters in the function are the data to be shared and the root process or main 
sender process, as denoted in the previous figure. When we run the code, in our case, we 
have a communication group of ten processes, variable_to_share is shared between the 
others processes in the group. Finally, the print statement visualizes the rank of the running 
process and the value of its variable:

print("process = %d" %rank + " variable shared  = %d " \  
                     %variable_to_share)

There's more…
Collective communication allows simultaneous data transmission between multiple processes 
in a group. In mpi4py the collective communication are provided only in their blocking version 
(they block the caller method until the buffered data involved can safely be used.)

The most commonly collective operations are:

ff Barrier synchronization across the group's processes

ff Communication functions:

�� Broadcasting data from one process to all process in the group

�� Gathering data from all process to one process

�� Scattering data from one process to all process

ff Reduction operation

Collective communication using scatter
The scatter functionality is very similar to a scatter broadcast but has one major difference, 
while comm.bcast sends the same data to all listening processes, comm.scatter can  
send the chunks of data in an array to different processes. The following figure illustrates  
the functionality of scatter:
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1 2 3 4

0

Scattering data from process 0 to processes 1, 2, 3, 4

The comm.scatter function takes the elements of the array and distributes them to the 
processes according to their rank, for which the first element will be sent to the process zero, 
the second element to the process 1, and so on. The function implemented in mpi4py is as 
follows:

recvbuf  = comm.scatter(sendbuf, rank_of_root_process)

How to do it…
In the next example, we see how to distribute data to different processes using the scatter 
functionality:

from mpi4py import MPI

comm = MPI.COMM_WORLD
rank = comm.Get_rank()

if rank == 0:
   array_to_share = [1, 2, 3, 4 ,5 ,6 ,7, 8 ,9 ,10] 
           
else:
   array_to_share = None

recvbuf = comm.scatter(array_to_share, root=0)
print("process = %d" %rank + " recvbuf = %d " %array_to_share)
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The output of the preceding code is, as follows:

C:\>mpiexec -n 10 python scatter.py

process = 0 variable shared  = 1

process = 4 variable shared  = 5

process = 6 variable shared  = 7

process = 2 variable shared  = 3

process = 5 variable shared  = 6

process = 3 variable shared  = 4

process = 7 variable shared  = 8

process = 1 variable shared  = 2

process = 8 variable shared  = 9

process = 9 variable shared  = 10

How it works…
The process of rank zero distributes the array_to_share data structure to other processes:

array_to_share = [1, 2, 3, 4 ,5 ,6 ,7, 8 ,9 ,10]

The recvbuf parameter indicates the value of the ith variable that will be sent to the ith 
process through the comm.scatter statement:

recvbuf = comm.scatter(array_to_share, root=0)

We also remark that one of the restrictions to comm.scatter is that you can scatter as many 
elements as the processors you specify in the execution statement. In fact attempting  
to scatter more elements than the processors specified (three in this example), you will get  
an error like this:

C:\> mpiexec -n 3 python scatter.py

Traceback (most recent call last):

  File "scatter.py", line 13, in <module>

    recvbuf = comm.scatter(array_to_share, root=0)

  File "Comm.pyx", line 874, in mpi4py.MPI.Comm.scatter (c:\users\utente\
appdata
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\local\temp\pip-build-h14iaj\mpi4py\src\mpi4py.MPI.c:73400)

  File "pickled.pxi", line 658, in mpi4py.MPI.PyMPI_scatter (c:\users\
utente\app

data\local\temp\pip-build-h14iaj\mpi4py\src\mpi4py.MPI.c:34035)

  File "pickled.pxi", line 129, in mpi4py.MPI._p_Pickle.dumpv (c:\users\
utente\a

ppdata\local\temp\pip-build-h14iaj\mpi4py\src\mpi4py.MPI.c:28325)

ValueError: expecting 3 items, got 10

mpiexec aborting job...

job aborted:

rank: node: exit code[: error message]

0: Utente-PC: 123: mpiexec aborting job

1: Utente-PC: 123

2: Utente-PC: 123

There's more…
The mpi4py library provides two other functions that are used to scatter data:

ff comm.scatter(sendbuf, recvbuf, root=0): This sends data from one 
process to all other processes in a communicator.

ff comm.scatterv(sendbuf, recvbuf, root=0): This scatters data from one 
process to all other processes in a group that provides different amount of data and 
displacements at the sending side.

The sendbuf and recvbuf arguments must be given in terms of a list (as in, the point-to-
point function comm.send):

buf = [data, data_size, data_type]

Here, data must be a buffer-like object of the size data_size and of the type data_type.
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Collective communication using gather
The gather function performs the inverse of the scatter functionality. In this case, all 
processes send data to a root process that collects the data received. The gather function 
implemented in mpi4py is, as follows:

recvbuf  = comm.gather(sendbuf, rank_of_root_process)

Here, sendbuf is the data that is sent and rank_of_root_process represents the process 
receiver of all the data:

1 2

0

3 4

Gathering data from processes 1, 2, 3, 4

How to do it…
In the following example, we wanted to represent just the condition shown in the preceding 
figure. Each process builds its own data that is to be sent to the root processes that are 
identified with the rank zero:

from mpi4py import MPI

comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()
data = (rank+1)**2
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data = comm.gather(data, root=0)
if rank == 0:
   print ("rank = %s " %rank +\
          "...receiving data to other process")
   for i in range(1,size):
      data[i] = (i+1)**2
      value = data[i]
      print(" process %s receiving %s from process %s"\
            %(rank , value , i))

Finally, we run the code with a group of processes equal to five:

C:\>mpiexec -n 5 python gather.py

rank = 0 ...receiving data to other process

 process 0 receiving 4 from process 1

 process 0 receiving 9 from process 2

 process 0 receiving 16 from process 3

 process 0 receiving 25 from process 4

The root process zero receives data from the other four processes, as we represented in the 
previous figure.

How it works…
We have n processes sending their data:

data = (rank+1)**2

If the rank of the process is zero, then the data is collected in an array:

if rank == 0:
   for i in range(1,size):
      data[i] = (i+1)**2
      value = data[i]
...

The gathering of data is given instead by the following function:

data = comm.gather(data, root=0)
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There's more…
To collect data, mpi4py provides the following functions:

ff gathering to one task: comm.Gather, comm.Gatherv, and comm.gather

ff gathering to all tasks: comm.Allgather, comm.Allgatherv, and comm.
allgather

Collective communication using Alltoall
The Alltoall collective communication combines the scatter and gather functionality. 
In mpi4py, there are three types of Alltoall collective communication:

ff comm .Alltoall(sendbuf, recvbuf): The all-to-all scatter/gather sends data 
from all-to-all processes in a group

ff comm.Alltoallv(sendbuf, recvbuf): The all-to-all scatter/gather vector sends 
data from all-to-all processes in a group, providing different amount of data and 
displacements

ff comm.Alltoallw(sendbuf, recvbuf): Generalized all-to-all communication 
allows different counts, displacements, and datatypes for each partner

How to do it…
In the following example, we'll see a mpi4py implementation of comm.Alltoall. We 
consider a communicator group of processes, where each process sends and receives an 
array of numerical data from the other processes defined in the group:

from mpi4py import MPI
import numpy

comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()

a_size = 1
senddata = (rank+1)*numpy.arange(size,dtype=int)
recvdata = numpy.empty(size*a_size,dtype=int)
comm.Alltoall(senddata,recvdata)

print(" process %s sending %s receiving %s"\
      %(rank , senddata , recvdata))
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We run the code with a communicator group of five processes and the output we get is as 
follows:

C:\>mpiexec -n 5 python alltoall.py

process 0 sending [0 1 2 3 4] receiving [0 0 0 0 0] 

process 1 sending [0 2 4 6 8] receiving [1 2 3 4 5]

process 2 sending [ 0  3  6  9 12] receiving [ 2  4  6  8 10]

process 3 sending [ 0  4  8 12 16] receiving [ 3  6  9 12 15]

process 4 sending [ 0  5 10 15 20] receiving [ 4  8 12 16 20]

How it works…
The comm.alltoall method takes the ith object from sendbuf of the task j and copies it 
into the jth object of the recvbuf argument of the task i.

We could also figure out what happened using the following schema:

Alltotall

2 3 4

64

6 9 12

8

0 1

20

0 3

128

10 15 20

1640

0 5

0 0 0

43

6 8 10

5

0 0

21

2 4

129

12 16 20

1563

4 8

P0

P1

P2

P3

P4

The Alltoall collective communication

The following are our observations regarding the schema:

ff The process P0 contains the data array [0 1 2 3 4], where it assigns 0 to itself, 1 to 
the process P1, 2 to the process P2, 3 to the process P3, and 4 to the process P4.

ff The process P1 contains the data array [0 2 4 6 8], where it assigns 0 to P0, 2 to 
itself, 4 to the process P2, 6 to the process P3, and 8 to the process P4.

ff The process P2 contains the data array [0 3 6 9 12], where it assigns 0 to P0, 3 to 
the process P1, 6 to itself, 9 to the process P3, and 12 to the process P4.

ff The process P3 contains the data array [0 4 8 12 16], where it assigns 0 to P0, 4 to 
the process P1, 8 to the process P2, 12 to itself, and 16 to the process P4.

ff The process P4 contains the data array [0 5 10 15 20], where it assigns 0 to P0, 5 to 
the process P1, 10 to the process P2, 15 to the process, and P3 and 20 to itself.
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There's more…
All-to-all personalized communication is also known as total exchange. This operation is 
used in a variety of parallel algorithms, such as the Fast Fourier transform, matrix transpose, 
sample sort, and some parallel database join operations.

The reduction operation
Similar to comm.gather, comm.reduce takes an array of input elements in each process 
and returns an array of output elements to the root process. The output elements contain the 
reduced result.

In mpi4py, we define the reduction operation through the following statement:

comm.Reduce(sendbuf, recvbuf, rank_of_root_process, op = type_of_
reduction_operation)

We must note that the difference with the comm.gather statement resides in the op 
parameter, which is the operation that you wish to apply to your data, and the mpi4py module 
contains a set of reduction operations that can be used. Some of the reduction operations 
defined by MPI are:

ff MPI.MAX: This returns the maximum element

ff MPI.MIN: This returns the minimum element

ff MPI.SUM: This sums up the elements

ff MPI.PROD: This multiplies all elements

ff MPI.LAND: This performs a logical operation and across the elements

ff MPI.MAXLOC: This returns the maximum value and the rank of the process  
that owns it

ff MPI.MINLOC: This returns the minimum value and the rank of the process  
that owns it

How to do it…
Now, we'll see how to implement a sum of an array of elements with the reduction operation 
MPI.SUM, using the reduction functionality. Each process will manipulate an array of size 
three. For array manipulation, we used the functions provided by the numpy Python module:

import numpy
import numpy as np 
from mpi4py import MPI 
comm = MPI.COMM_WORLD 
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size = comm.size 
rank = comm.rank

array_size = 3
recvdata = numpy.zeros(array_size,dtype=numpy.int)
senddata = (rank+1)*numpy.arange(a_size,dtype=numpy.int)
print(" process %s sending %s " %(rank , senddata))
comm.Reduce(senddata,recvdata,root=0,op=MPI.SUM)
print ('on task',rank,'after Reduce:    data = ',recvdata)

It makes sense to run the code with a communicator group of three processes, that is, the 
size of the manipulated array. Finally, we obtain the result as:

C:\>mpiexec -n 3 python reduction2.py
 process 2 sending [0 3 6]
on task 2 after Reduce:    data =  [0 0 0]
 process 1 sending [0 2 4]
on task 1 after Reduce:    data =  [0 0 0]
 process 0 sending [0 1 2]
on task 0 after Reduce:    data =  [ 0  6 12]

How it works…
To perform the reduction sum, we use the comm.Reduce statement and also identify with 
rank zero, the root process, which will contain recvbuf, that represents the final result of the 
computation:

comm.Reduce(senddata,recvdata,root=0,op=MPI.SUM)

Also, we must note that with the op=MPI.SUM option, we apply the sum operation to all of the 
elements of the column array. To better understand how the reduction operates, let's take a 
look at the following figure:

P0

P1

P2

0 1 2

20

0 3 6

4

sendbuf

recvbuf

P00 6 2

reduction

MPI.SUM

The reduction collective communication
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The sending operation is as follows:

ff The process P0 sends the data array [0 1 2 ]

ff The process P1 sends the data array [0 2 4]

ff The process P2 sends the data array [0 3 6]

The reduction operation sums the ith elements of each task and then puts the result in the ith 
element of the array in the root process P0.

For the receiving operation, the process P0 receives the data array [0 6 12].

How to optimize communication
An interesting feature that is provided by MPI concerns the virtual topologies. As already 
noted, all the communication functions (point-to-point or collective) refer to a group of 
processes. We have always used the MPI_COMM_WORLD group that includes all processes. 
It assigns a rank 0 to n-1 for each process that belongs to a communicator of the size n. 
However, MPI allows us to assign a virtual topology to a communicator. It defines a particular 
assignment of labels to the different processes. A mechanism of this type permits you to 
increase the execution performance. In fact, if you build a virtual topology, then every node 
will communicate only with its virtual neighbor, optimizing the performance.

For example, if the rank was randomly assigned, a message could be forced to pass to many 
other nodes before it reaches the destination. Beyond the question of performance, a virtual 
topology makes sure that the code is more clear and readable. MPI provides two building 
topologies. The first construct creates Cartesian topologies, while the latter creates any kind of 
topologies. Specifically, in the second case, we must supply the adjacency matrix of the graph 
that you want to build. We will deal only with Cartesian topologies, through which it is possible 
to build several structures that are widely used: mesh, ring, toroid, and so on. The function 
used to create a Cartesian topology is, as follows:

comm.Create_cart((number_of_rows,number_of_columns))

Here, number_of_rows and number_of_columns specify the rows and columns of the grid 
that is to be made.

How to do it…
In the following example, we see how to implement a Cartesian topology of the size M×N. Also, 
we define a set of coordinates to better understand how all the processes are disposed:

from mpi4py import MPI
import numpy as np
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UP = 0
DOWN = 1
LEFT = 2
RIGHT = 3
neighbour_processes = [0,0,0,0]
if __name__ == "__main__":
    comm = MPI.COMM_WORLD
    rank = comm.rank
    size = comm.size

    grid_rows = int(np.floor(np.sqrt(comm.size)))
    grid_column = comm.size // grid_rows

        
    if grid_rows*grid_column > size:
        grid_column -= 1
    if grid_rows*grid_column > size:
        grid_rows -= 1

    if (rank == 0) :
        print("Building a %d x %d grid topology:"\
              % (grid_rows, grid_column) )
               

    cartesian_communicator = \
                           comm.Create_cart( \
                               (grid_rows, grid_column), \
                               periods=(True, True), reorder=True)
    my_mpi_row, my_mpi_col = \
                cartesian_communicator.Get_coords\
                ( cartesian_communicator.rank ) 

    neighbour_processes[UP], neighbour_processes[DOWN]\
                             = cartesian_communicator.Shift(0, 1)
    neighbour_processes[LEFT],  \
                               neighbour_processes[RIGHT]  = \
                               cartesian_communicator.Shift(1, 1)
    print ("Process = %s \
row = %s \
column = %s ----> neighbour_processes[UP] = %s \
neighbour_processes[DOWN] = %s \
neighbour_processes[LEFT] =%s neighbour_processes[RIGHT]=%s" \
           %(rank, my_mpi_row, \
             my_mpi_col,neighbour_processes[UP], \
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             neighbour_processes[DOWN], \
             neighbour_processes[LEFT] , \
             neighbour_processes[RIGHT]))

By running the script, we obtain the following result:

C:\>mpiexec -n 4 python virtualTopology.py

Building a 2 x 2 grid topology:

Process = 0 row = 0 column = 0 ----> 

neighbour_processes[UP] = -1 

neighbour_processes[DOWN] = 2 

neighbour_processes[LEFT] =-1 

neighbour_processes[RIGHT]=1

Process = 1 row = 0 column = 1 ----> 

neighbour_processes[UP] = -1 

neighbour_processes[DOWN] = 3 

neighbour_processes[LEFT] =0 

neighbour_processes[RIGHT]=-1

Process = 2 row = 1 column = 0 ----> 

neighbour_processes[UP] = 0 

neighbour_processes[DOWN] = -1 

neighbour_processes[LEFT] =-1 

neighbour_processes[RIGHT]=3

Process = 3 row = 1 column = 1 ----> 

neighbour_processes[UP] = 1 

neighbour_processes[DOWN] = -1 

neighbour_processes[LEFT] =2 

neighbour_processes[RIGHT]=-1

For each process, the output should read as: if neighbour_processes = -1, then it has 
no topological proximity; otherwise, neighbour_processes shows the rank of the process 
closely.
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How it works…
The resulting topology is a mesh of 2×2 (refer to the previous figure for a mesh 
representation), the size of which is equal to the number of processes in the input,  
that is, four:

grid_rows = int(np.floor(np.sqrt(comm.size)))
grid_column = comm.size // grid_rows
    if grid_rows*grid_column > size:
        grid_column -= 1
    if grid_rows*grid_column > size:
        grid_rows -= 1

Then, the Cartesian topology is built:

cartesian_communicator = comm.Create_cart( \ 
    (grid_rows, grid_column), periods=(False, False), reorder=True)
...

To find out the position of the ith process, we use the Get_coords()method in the following 
form:

my_mpi_row, my_mpi_col = cartesian_communicator.Get_coords( cartesian_
communicator.rank )
For each process, in addition to their coordinates, we calculated 
and got to know which processes are topologically closer. For 
this purpose, we used the comm.Shift function comm.Shift (rank_
source,rank_dest)

In this form we have:

neighbour_processes[UP], neighbour_processes[DOWN] = \ cartesian_
communicator.Shift(0, 1)

neighbour_processes[LEFT],  neighbour_processes[RIGHT] = \ cartesian_
communicator.Shift(1, 1)
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The obtained topology is shown in the following figure:

P0

P2 P3

P1

The virtual mesh 2x2 topology

There's more…
To obtain a toroidal topology of the size M×N, we need the following lines of code:

cartesian_communicator = comm.Create_cart( (grid_rows, grid_column), 
periods=(True, True), reorder=True)

This corresponds to the following output:

C:\>mpiexec -n 4 python VirtualTopology.py
Building a 2 x 2 grid topology:
Process = 0 row = 0 column = 0 ----> 
neighbour_processes[UP] = 2 
neighbour_processes[DOWN] = 2 
neighbour_processes[LEFT] =1 
neighbour_processes[RIGHT]=1
Process = 1 row = 0 column = 1 ----> 
neighbour_processes[UP] = 3 
neighbour_processes[DOWN] = 3 
neighbour_processes[LEFT] =0 
neighbour_processes[RIGHT]=0
Process = 2 row = 1 column = 0 ----> 
neighbour_processes[UP] = 0 
neighbour_processes[DOWN] = 0 
neighbour_processes[LEFT] =3 neighbour_processes[RIGHT]=3
Process = 3 row = 1 column = 1 ----> 
neighbour_processes[UP] = 1 
neighbour_processes[DOWN] = 1 
neighbour_processes[LEFT] =2 
neighbour_processes[RIGHT]=2
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Also, it covers the topology represented here:

P0

P2 P3

P1

The virtual toroidal 2x2 topology
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4
Asynchronous 
Programming

In this chapter, we will cover the following recipes:

ff How to use the concurrent.futures Python module

ff Event loop management with Asyncio

ff Handling coroutines with Asyncio

ff Task manipulation with Asyncio

ff Dealing with Asyncio and Futures

Introduction
With the sequential and parallel execution model, there is a third model, called the 
asynchronous model, that is of fundamental importance to us along with the concept of event 
programming. The execution model of asynchronous activities can be implemented using a 
single stream of main control, both in uniprocessor systems and multiprocessor systems.
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In the asynchronous model of a concurrent execution, various tasks intersect with the 
timeline, and all of this happens under the action of a single flow of control (single-threaded). 
The execution of a task can be suspended and then resumed, but this alternates the time of 
other tasks. The following figure expresses this concept in a clear manner:

Task 1 Task 2 Task 3

Time

Asynchronous programming model

As you can see, the tasks (each with a different color) are interleaved with one another, but 
they are in a single thread of control; this implies that when one task is in execution, the 
other tasks are not. A key difference between the multithreaded programming model and the 
single-threaded asynchronous concurrent model is that in the first case, the operating system 
decides on the timeline, whether to suspend the activity of a thread and start another, while 
in the second case, the programmer must assume that a thread may be suspended and 
replaced with another at any time.

The programmer can program a task as a sequence of smaller steps that are executed 
intermittently; so if a task uses the output of another, the dependent task must be written to 
accept its input.

Using the concurrent.futures Python 
modules

With the release of Python 3.2, the concurrent.future module was introduced, which 
allows us to manage concurrent programming tasks, such as process and thread pooling, 
nondeterministic execution flows, and processes and thread synchronization.

This package is built by the following classes:

ff concurrent.futures.Executor: This is an abstract class that provides methods 
to execute calls asynchronously.

ff submit (function ,argument): This schedules the execution of a function 
(called callable) on the arguments.
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ff map (function,argument): This executes the function on arguments in an 
asynchronous mode.

ff shutdown (Wait = True): This signals the executor to free any resource.

ff concurrent.futures.Future: This encapsulates the asynchronous execution 
of a callable function. Future objects are instantiated by submitting tasks (functions 
with optional parameters) to executors.

Executors are abstractions that are accessed through their subclasses: thread or process 
ExecutorPools. In fact, instantiation of threads and process is a resource-demanding task, 
so it is better to pool these resources and use them as repeatable launchers or executors 
(hence, the executors concept) for parallel or concurrent tasks.

Dealing with the process and thread pool
A thread or process pool (also called pooling) indicates a software manager that is used to 
optimize and simplify the use of threads and/or processes within a program. Through the 
pooling, you can submit the task (or tasks) that are to be executed to the pooler. The pool 
is equipped with an internal queue of tasks that are pending and a number of threads or 
processes that execute them. A recurring concept in pooling is reuse: a thread (or process) is 
used several times for different tasks during its lifecycle. It decreases the overhead of creating 
and increasing the performance of the program that takes advantage of the pooling. Reuse is 
not a rule, but it is one of the main reasons that lead a programmer to use pooling in his/her 
application.

Task Queue

Task Completed

POOL

Pooling management
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Getting ready
The current.Futures module provides two subclasses of the Executor class, 
respectively, which manipulates a pool of threads and a pool of processes asynchronously. 
The two subclasses are as follows:

ff concurrent.futures.ThreadPoolExecutor(max_workers)

ff concurrent.futures.ProcessPoolExecutor(max_workers)

The max_workers parameter identifies the max number of workers that execute the call 
asynchronously.

How to do it…
The following example shows you the functionality of process and thread pooling. The task 
to be performed is that we have a list of numbers from one to 10, number_list. For each 
element of the list, a count is made up to 10,000,000 (just to waste time) and then the latter 
number is multiplied with the ith element of the list.

By doing this, the following cases are evaluated:

ff Sequential execution

ff A thread pool with 5 workers

Consider the following code:

#
# Concurrent.Futures Pooling - Chapter 4 Asynchronous Programming
#

import concurrent.futures
import time

number_list = [1,2,3,4,5,6,7,8,9,10]

def evaluate_item(x):
    #count...just to make an operation   
    result_item = count(x)
    #print the input item and the result
    print ("item " + str(x) + " result " + str(result_item))

def count(number) : 
    for i in range(0,10000000):
        i=i+1
    return i*number
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if __name__ == "__main__":

##Sequential Execution
    start_time = time.clock()
    for item in number_list:
        evaluate_item(item)
    print ("Sequential execution in " + \
           str(time.clock() - start_time), "seconds")

    ##Thread pool Execution
    start_time_1 = time.clock()
    with concurrent.futures.ThreadPoolExecutor(max_workers=5)\
         as executor:
        for item in number_list:
            executor.submit(evaluate_item, item)
    print ("Thread pool execution in " + \
           str(time.clock() - start_time_1), "seconds")

    ##Process pool Execution
    start_time_2 = time.clock()
    with concurrent.futures.ProcessPoolExecutor(max_workers=5)\
         as executor:
        for item in number_list:
            executor.submit(evaluate_item, item)
    print ("Process pool execution in " + \
           str(time.clock() - start_time_2), "seconds")

After running the code, we have the following results with the execution time:

C:\Python CookBook\Chapter 4- Asynchronous Programming\ >python 
Process_pool_with_concurrent_futures.py
item 1 result 10000000
item 2 result 20000000
item 3 result 30000000
item 4 result 40000000
item 5 result 50000000
item 6 result 60000000
item 7 result 70000000
item 8 result 80000000
item 9 result 90000000
item 10 result 100000000
Sequential execution in 17.241238674183425 seconds
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item 4 result 40000000
item 2 result 20000000
item 1 result 10000000
item 5 result 50000000
item 3 result 30000000
item 7 result 70000000
item 6 result 60000000
item 8 result 80000000
item 10 result 100000000
item 9 result 90000000
Thread pool execution in 17.14648646290675 seconds

item 3 result 30000000
item 1 result 10000000
item 2 result 20000000
item 4 result 40000000
item 5 result 50000000
item 6 result 60000000
item 7 result 70000000
item 9 result 90000000
item 8 result 80000000
item 10 result 100000000
Process pool execution in 9.913172716938618 seconds

How it works…
We build a list of numbers stored in number_list and for each element in the list, we 
operate the counting procedure until 100,000,000 iterations. Then, we multiply the resulting 
value for 100,000,000:

def evaluate_item(x):
    #count...just to make an operation   
    result_item = count(x)

def count(number) : 
    for i in range(0,10000000):
        i=i+1
    return i*number
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In the main program, we execute the task that will be performed in a sequential mode:

if __name__ == "__main__":
   for item in number_list:
       evaluate_item(item)

Also, in a parallel mode, we will use the concurrent.futures module's pooling capability 
for a thread pool:

    with concurrent.futures.ThreadPoolExecutor(max_workers=5)\
         as executor:
        for item in number_list:
            executor.submit(evaluate_item, item)

The ThreadPoolExecutor executes the given task using one of its internally pooled 
threads. It manages five threads working on its pool. Each thread takes a job out from the 
pool and executes it. When the job is executed, it takes the next job to be processed from the 
thread pool.

When all the jobs are processed, the execution time is printed:

print ("Thread pool execution in " + \
           str(time.clock() - start_time_1), "seconds")

For the process pooling implemented by the ProcessPoolExecutor class, we have:

    with concurrent.futures.ProcessPoolExecutor(max_workers=5)\
         as executor:
        for item in number_list:
            executor.submit(evaluate_item, item)

Like ThreadPoolExecutor, the ProcessPoolExecutor class is an executor 
subclass that uses a pool of processes to execute calls asynchronously. However, unlike 
ThreadPoolExecutor, the ProcessPoolExecutor uses the multiprocessing module, 
which allows us to outflank the global interpreter lock and obtain a shorter execution time.

There's more…
The pooling is used in almost all server applications, where there is a need to handle more 
simultaneous requests from any number of clients. Many other applications, however, require 
that each task should be performed instantly or you have more control over the thread that 
executes it. In this case, pooling is not the best choice.
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Event loop management with Asyncio
The Python module Asyncio provides facilities to manage events, coroutines, tasks and 
threads, and synchronization primitives to write concurrent code. The main components and 
concepts of this module are:

ff An event loop: The Asyncio module allows a single event loop per process

ff Coroutines: This is the generalization of the subroutine concept. Also, a coroutine 
can be suspended during the execution so that it waits for external processing (some 
routine in I/O) and returns from the point at which it had stopped when the external 
processing was done.

ff Futures: This defines the Future object, such as the concurrent.futures 
module that represents a computation that has still not been accomplished.

ff Tasks: This is a subclass of Asyncio that is used to encapsulate and manage 
coroutines in a parallel mode.

In this recipe, the focus is on handling events. In fact, in the context of asynchronous 
programming, events are very important since they are inherently asynchronous.

What is an event loop
Within a computational system, the entity that can generate events is called an event source, 
while the entity that negotiates to manage an event is called the event handler. Sometimes, 
there may be a third entity called an event loop. It realizes the functionality to manage all the 
events in a computational code. More precisely, the event loop acts cyclically during the whole 
execution of the program and keeps track of events that have occurred within a data structure 
to queue and then process them one at a time by invoking the event handler if the main 
thread is free. Finally, we report a pseudocode of an event loop manager:

while (1) {
events = getEvents();
for (e in events)
processEvent(e);
}

All the events in the while loop are caught and then processed by the event handler. The 
handler that processes an event is the only activity that takes place in the system. When the 
handler has ended, the control is passed on to the next event that is scheduled.
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Getting ready
Asyncio provides the following methods that are used to manage an event loop:

ff loop = get_event_loop(): Using this, you can get the event loop for the current 
context.

ff loop.call_later(time_delay,callback,argument): This arranges for the 
callback that is to be called after the given time_delay seconds.

ff loop.call_soon(callback,argument): This arranges for a callback that is to 
be called as soon as possible. The callback is called after call_soon() returns and 
when the control returns to the event loop.

ff loop.time(): This returns the current time, as a float value, according to the event 
loop's internal clock.

ff asyncio.set_event_loop(): This sets the event loop for the current context to 
loop.

ff asyncio.new_event_loop(): This creates and returns a new event loop object 
according to this policy's rules.

ff loop.run_forever(): This runs until stop() is called.

How to do it…
In this example, we show you how to use the loop event statements provided by the Asyncio 
library to build an application that works in an asynchronous mode. Let's consider the 
following code:

import asyncio
import datetime
import time

def function_1(end_time, loop):
    print ("function_1 called")
    if (loop.time() + 1.0) < end_time:
        loop.call_later(1, function_2, end_time, loop)
    else:
        loop.stop()
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def function_2(end_time, loop):
    print ("function_2 called ")
    if (loop.time() + 1.0) < end_time:
        loop.call_later(1, function_3, end_time, loop)
    else:
        loop.stop()

def function_3(end_time, loop):
    print ("function_3 called")
    if (loop.time() + 1.0) < end_time:
        loop.call_later(1, function_1, end_time, loop)
    else:
        loop.stop()

def function_4(end_time, loop):
    print ("function_5 called")
    if (loop.time() + 1.0) < end_time:
        loop.call_later(1, function_4, end_time, loop)
    else:
        loop.stop()

loop = asyncio.get_event_loop()

end_loop = loop.time() + 9.0
loop.call_soon(function_1, end_loop, loop)
#loop.call_soon(function_4, end_loop, loop)

loop.run_forever()
loop.close()

The output of the preceding code is as follows:

C:\Python Parallel Programming INDEX\Chapter 4- Asynchronous 
Programming >python asyncio_loop.py
function_1 called
function_2 called
function_3 called
function_1 called
function_2 called
function_3 called
function_1 called
function_2 called
function_3 called
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How it works…
In this example, we defined three asynchronous tasks, where each task calls the subsequent 
in the order, as shown in the following figure:

Task 1 Task 2 Task 3

Time

Task execution in the example

To accomplish this, we need to capture the event loop:

loop = asyncio.get_event_loop()

Then, we schedule the first call to function_1() by the call_soon construct:

end_loop = loop.time() + 9.0
loop.call_soon(function_1, end_loop, loop)

Let's note the definition of function_1:

def function_1(end_time, loop):
    print ("function_1 called")
    if (loop.time() + 1.0) < end_time:
        loop.call_later(1, function_2, end_time, loop)
    else:
        loop.stop()

This defines the asynchronous behavior of the application with the following arguments:

ff end_time: This defines the upper time limit within function_1 and makes the call 
to function_2 through the call_later method

ff loop: This is the loop event that was captured previously with the get_event_
loop() method
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The task of function_1 is pretty simple, which is to print its name, but it could also be more 
computationally intensive:

    print ("function_1 called")

After performing the task, it is compared to loop.time () with the total length of the run; 
the total number of the cycles is 12 and if it is not passed this time, then it is executed with 
the call_later method with a delay of 1 second:

 if (loop.time() + 1.0) < end_time:
        loop.call_later(1, function_2, end_time, loop)
    else:
        loop.stop()

For funcion_2() and function_3(), the operation is the same.

If the running time expires, then the loop event must end:

loop.run_forever()
loop.close()

Handling coroutines with Asyncio
We saw, in the course of the various examples presented, that when a program becomes 
very long and complex, it is convenient to divide it into subroutines, each of which realizes a 
specific task for which it implements a suitable algorithm. The subroutine cannot be executed 
independently, but only at the request of the main program, which is then responsible for 
coordinating the use of subroutines. Coroutines are a generalization of the subroutine. Like a 
subroutine, the coroutine computes a single computational step, but unlike subroutines, there 
is no main program that can be used to coordinate the results. This is because the coroutines 
link themselves together to form a pipeline without any supervising function responsible for 
calling them in a particular order. In a coroutine, the execution point can be suspended and 
resumed later after keeping track of its local state in the intervening time. Having a pool of 
coroutines, it is possible to interleave their computations: run the first one until it yields the 
control back, then run the second, and so on down the line.

The control component of the interleave is the even loop, which was explained in the previous 
recipe. It keeps track of all the coroutines and schedules when they will be executed.

The other important aspects of coroutines are, as follows:

ff Coroutines allow multiple entry points that can be yielded multiple times

ff Coroutines can transfer the execution to any other coroutines
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The term "yield" is used to describe a coroutine that pauses and passes the control flow to 
another coroutine. Since coroutines can pass values along with the control flow to another 
coroutine, the phrase "yielding a value" is used to describe the yielding and passing of a value 
to the coroutine that receives the control.

Getting ready
To define a coroutine with the Asyncio module, we simply use an annotation:

import asyncio 
@asyncio.coroutine
def coroutine_function( function_arguments ) :
    # DO_SOMETHING

How to do it…
In this example, we will see how to use the coroutine mechanism of Asyncio to simulate 
a finite state machine of five states. A finite state machine or automaton (FSA) is a 
mathematical model that is widely used not only in engineering disciplines, but also in 
sciences, such as mathematics and computer science. The automata through which we  
want to simulate the behavior is as follows:
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In the preceding diagram, we have indicated with S0, S1, S2, S3, and S4 the states of the 
system. Here, 0 and 1 are the values for which the automata can pass from one state to the 
next (this operation is called a transition). So for example, the state S0 can be passed to the 
state S1 only for the value 1 and S0 can be passed to the state S2 only for the value 0. The 
Python code that follows, simulates a transition of the automaton from the state S0, the so-
called Start State, up to the state S4, the End State:

#Asyncio Finite State Machine
	
import asyncio
import time
from random import randint

@asyncio.coroutine
def StartState():
    print ("Start State called \n")
    input_value = randint(0,1)
    time.sleep(1)
    if (input_value == 0):
        result = yield from State2(input_value)
    else :
        result = yield from State1(input_value)
    print("Resume of the Transition : \nStart State calling "\
          + result)
    
    
@asyncio.coroutine
def State1(transition_value):
    outputValue =  str(("State 1 with transition value = %s \n"\
                        %(transition_value)))
    input_value = randint(0,1)
    time.sleep(1)
    print("...Evaluating...")
    if (input_value == 0):
        result =  yield from State3(input_value)
    else :
        result = yield from State2(input_value)
    result = "State 1 calling " + result
    return (outputValue + str(result))

@asyncio.coroutine
def State2(transition_value):



Chapter 4

141

    outputValue =  str(("State 2 with transition value = %s \n" \
                        %(transition_value)))
    input_value = randint(0,1)
    time.sleep(1)
    print("...Evaluating...")
    if (input_value == 0):
        result = yield from State1(input_value)
    else :
        result = yield from State3(input_value)
    result = "State 2 calling " + result
    return (outputValue + str(result))

@asyncio.coroutine
def State3(transition_value):
    outputValue =  str(("State 3 with transition value = %s \n" \
                        %(transition_value)))
    input_value = randint(0,1)
    time.sleep(1)
    print("...Evaluating...")
    if (input_value == 0):
        result = yield from State1(input_value)
    else :
        result = yield from EndState(input_value)
    result = "State 3 calling " + result
    return (outputValue + str(result))

@asyncio.coroutine
def EndState(transition_value):
    outputValue =  str(("End State with transition value = %s \n"\
                        %(transition_value)))
    print("...Stop Computation...")
    return (outputValue )

if __name__ == "__main__":
    print("Finite State Machine simulation with Asyncio Coroutine")
    loop = asyncio.get_event_loop()
    loop.run_until_complete(StartState())

After running the code, we have an output similar to this:

C:\Python CookBook\Chapter 4- Asynchronous Programming\codes - Chapter 
4>python asyncio_state_machine.py
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Finite State Machine simulation with Asyncio Coroutine
Start State called
...Evaluating...
...Evaluating...
...Evaluating...
...Evaluating...
...Evaluating...
...Evaluating...
...Evaluating...
...Evaluating...
...Evaluating...
...Evaluating...
...Evaluating...
...Evaluating...
...Stop Computation...
Resume of the Transition :
Start State calling State 1 with transition value = 1
State 1 calling State 3 with transition value = 0
State 3 calling State 1 with transition value = 0
State 1 calling State 2 with transition value = 1
State 2 calling State 3 with transition value = 1
State 3 calling State 1 with transition value = 0
State 1 calling State 2 with transition value = 1
State 2 calling State 1 with transition value = 0
State 1 calling State 3 with transition value = 0
State 3 calling State 1 with transition value = 0
State 1 calling State 2 with transition value = 1
State 2 calling State 3 with transition value = 1
State 3 calling End State with transition value = 1

How it works…
Each state of the automata has been defined with the following annotation:

@asyncio.coroutine

For example, the state S0 is defined as:

@asyncio.coroutine
def StartState():
    print ("Start State called \n")
    input_value = randint(0,1)
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    time.sleep(1)
    if (input_value == 0):
        result = yield from State2(input_value)
    else :
        result = yield from State1(input_value)
   

The transition to the next state is determined by input_value, which is defined by the  
randint(0,1) function of Python's module random. This function provides randomly the 
value 0 or 1. In this manner, it randomly determines to which state the finite state machine 
will be passed:

input_value = randint(0,1)

After determining the value at which state the finite state machine will be passed, the 
coroutine calls the next coroutine using the command yield from:

if (input_value == 0):
        result = yield from State2(input_value)
    else :
        result = yield from State1(input_value)

The variable result is the value that each coroutine returns. It is a string, and by the end of the 
computation, we can reconstruct the transition from the initial state of the automation, the 
Start State, up to the final state, the End State.

The main program starts the evaluation inside the event loop as:

if __name__ == "__main__":
    print("Finite State Machine simulation with Asyncio Coroutine")
    loop = asyncio.get_event_loop()
    loop.run_until_complete(StartState())

Task manipulation with Asyncio
Asyncio is designed to handle asynchronous processes and concurrent task executions on an 
event loop. It also provides us with the asyncio.Task() class for the purpose of wrapping 
coroutines in a task. Its use is to allow independently running tasks to run concurrently with 
other tasks on the same event loop. When a coroutine is wrapped in a task, it connects the 
task to the event loop and then runs automatically when the loop is started, thus providing a 
mechanism to automatically drive the coroutine.
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Getting ready
The Asyncio module provides us with the asyncio.Task(coroutine) method to handle 
computations with tasks. It schedules the execution of a coroutine. A task is responsible 
for the execution of a coroutine object in an event loop. If the wrapped coroutine yields 
from a future, the task suspends the execution of the wrapped coroutine and waits for the 
completion of the future.

When the future is complete, the execution of the wrapped coroutine restarts with the result 
or the exception of the future. Also, we must note that an event loop only runs one task at a 
time. Other tasks may run parallelly if other event loops run in different threads. While a task 
waits for the completion of a future, the event loop executes a new task.

How to do it…
In the following sample code, we've shown you how three mathematical functions can be 
executed concurrently by the Asyncio.Task() statement:

"""
Asyncio using Asyncio.Task to execute three math function in parallel
"""
import asyncio

@asyncio.coroutine
def factorial(number):
    f = 1
    for i in range(2, number+1):
        print("Asyncio.Task: Compute factorial(%s)" % (i))
        yield from asyncio.sleep(1)
        f *= i
    print("Asyncio.Task - factorial(%s) = %s" % (number, f))

@asyncio.coroutine
def fibonacci(number):
    a, b = 0, 1
    for i in range(number):
        print("Asyncio.Task: Compute fibonacci (%s)" % (i))
        yield from asyncio.sleep(1)
        a, b = b, a + b
    print("Asyncio.Task - fibonacci(%s) = %s" % (number, a))
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@asyncio.coroutine
def binomialCoeff(n, k):
    result = 1
    for i in range(1, k+1):
        result = result * (n-i+1) / i
        print("Asyncio.Task: Compute binomialCoeff (%s)" % (i))
        yield from asyncio.sleep(1)
    print("Asyncio.Task - binomialCoeff(%s , %s) = \ 
                    %s" % (n,k,result))

if __name__ == "__main__":
    tasks = [asyncio.Task(factorial(10)),
             asyncio.Task(fibonacci(10)),
             asyncio.Task(binomialCoeff(20,10))]
    loop = asyncio.get_event_loop()
    loop.run_until_complete(asyncio.wait(tasks))
    loop.close()

The result of the preceding code is:

C:\ Python CookBook \Chapter 4- Asynchronous Programming\codes - 
Chapter 4> python asyncio_Task.py
Asyncio.Task: Compute factorial(2)
Asyncio.Task: Compute fibonacci (0)
Asyncio.Task: Compute binomialCoeff (1)
Asyncio.Task: Compute factorial(3)
Asyncio.Task: Compute fibonacci (1)
Asyncio.Task: Compute binomialCoeff (2)
Asyncio.Task: Compute factorial(4)
Asyncio.Task: Compute fibonacci (2)
Asyncio.Task: Compute binomialCoeff (3)
Asyncio.Task: Compute factorial(5)
Asyncio.Task: Compute fibonacci (3)
Asyncio.Task: Compute binomialCoeff (4)
Asyncio.Task: Compute factorial(6)
Asyncio.Task: Compute fibonacci (4)
Asyncio.Task: Compute binomialCoeff (5)
Asyncio.Task: Compute factorial(7)
Asyncio.Task: Compute fibonacci (5)
Asyncio.Task: Compute binomialCoeff (6)
Asyncio.Task: Compute factorial(8)
Asyncio.Task: Compute fibonacci (6)
Asyncio.Task: Compute binomialCoeff (7)
Asyncio.Task: Compute factorial(9)
Asyncio.Task: Compute fibonacci (7)
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Asyncio.Task: Compute binomialCoeff (8)
Asyncio.Task: Compute factorial(10)
Asyncio.Task: Compute fibonacci (8)
Asyncio.Task: Compute binomialCoeff (9)
Asyncio.Task - factorial(10) = 3628800
Asyncio.Task: Compute fibonacci (9)
Asyncio.Task: Compute binomialCoeff (10)
Asyncio.Task - fibonacci(10) = 55
Asyncio.Task - binomialCoeff(20 , 10) = 184756.0

How it works…
In this example, we defined three coroutines, factorial, fibonacci, and 
binomialCoeff each of which, as explained previously, is identified by the @asyncio.
coroutine decorator:

@asyncio.coroutine
def factorial(number):
do Something

@asyncio.coroutine
def fibonacci(number):
do Something

@asyncio.coroutine
def binomialCoeff(n, k):
do Something

To perform these three tasks parallelly, we first put them in the list tasks, in the following 
manner:

if __name__ == "__main__":
    tasks = [asyncio.Task(factorial(10)),
             asyncio.Task(fibonacci(10)),
             asyncio.Task(binomialCoeff(20,10))]

Then, we get the event_loop:

loop = asyncio.get_event_loop()
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Next, we run the tasks:

    loop.run_until_complete(asyncio.wait(tasks))

Here, asyncio.wait statement (tasks) waits for the given coroutines to complete.

In the last statement, we close the event loop:

    loop.close()

Dealing with Asyncio and Futures
Another key component of the Asyncio module is the Future class. This is very similar to 
concurrent.futures.Futures, but of course, it is adapted in the main mechanism of 
Asyncio's event loop. The asyncio.Future class represents a result (but can also be an 
exception) that is not yet available. It therefore represents an abstraction of something that is 
yet to be accomplished.

Callbacks that have to process any results are in fact added to the instances of this class.

Getting ready
To manage an object Future in Asyncio, we must declare the following:

import asyncio
future = asyncio.Future()

The basic methods of this class are:

ff cancel(): This cancels the future and schedules callbacks

ff result(): This returns the result that this future represents

ff exception(): This returns the exception that was set on this future

ff add_done_callback(fn): This adds a callback that is to be run when future is 
executed

ff remove_done_callback(fn): This removes all instances of a callback from the 
"call when done" list

ff set_result(result): This marks the future as complete and sets its result

ff set_exception(exception): This marks the future as complete and sets an 
exception
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How to do it…
The following example shows you how to use the Futures class for the management of two 
coroutines first_coroutine and second_coroutine that perform the tasks, such as the 
sum of the first n integers and second the factorial of n. The code is as follows:

"""
Asyncio.Futures -  Chapter 4 Asynchronous Programming
"""
import asyncio
import sys

#SUM OF N INTEGERS
@asyncio.coroutine
def first_coroutine(future,N):
    count = 0
    for i in range(1,N+1):
        count=count + i
    yield from asyncio.sleep(4)
    future.set_result("first coroutine (sum of N integers) result = "\
                      + str(count))
 

#FACTORIAL(N)
@asyncio.coroutine
def second_coroutine(future,N):
    count = 1
    for i in range(2, N+1):
        count *= i
    yield from asyncio.sleep(3)
    future.set_result("second coroutine (factorial) result = "\
                      + str(count))
 
def got_result(future):
    print(future.result())
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if __name__ == "__main__":
    N1 = int(sys.argv[1])
    N2 = int(sys.argv[2])

    loop = asyncio.get_event_loop()
    future1 = asyncio.Future()
    future2 = asyncio.Future()
   
    tasks = [
        first_coroutine(future1,N1),
        second_coroutine(future2,N2)]
 
    future1.add_done_callback(got_result)
    future2.add_done_callback(got_result)
 
    loop.run_until_complete(asyncio.wait(tasks))
    loop.close()

The following output is obtained after multiple runs:

C:\Python CookBook\Chapter 4- Asynchronous Programming\codes - Chapter 
4>python Asyncio_future.py 1 1
first coroutine (sum of N integers) result = 1
second coroutine (factorial) result = 1

C:\Python CookBook\Chapter 4- Asynchronous Programming\codes - Chapter 
4>python Asyncio_future.py 2 2
first coroutine (sum of N integers) result = 3
second coroutine (factorial) result = 2

C:\ Python CookBook\Chapter 4- Asynchronous Programming\codes - 
Chapter 4>python Asyncio_future.py 3 3
first coroutine (sum of N integers) result = 6
second coroutine (factorial) result = 6

C:\ Python CookBook\Chapter 4- Asynchronous Programming\codes - 
Chapter 4>python Asyncio_future.py 5 5
first coroutine (sum of N integers) result = 15
second coroutine (factorial) result = 120
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How it works…
In the main program, we define the objects' future to associate the coroutines:

if __name__ == "__main__":

future1 = asyncio.Future()
future2 = asyncio.Future()

While defining the tasks, we pass the object future as an argument of coroutines:

tasks = [first_coroutine(future1,N1), 
         second_coroutine(future2,N2)]

Finally, we add a callback that is to be run when the future gets executed:

future1.add_done_callback(got_result)
future2.add_done_callback(got_result)

Here, got_result is a function that prints the final result of the future:

def got_result(future):
    print(future.result())

In the coroutine wherein we pass the object future as an argument, after the computation, we 
set a sleep time of 3 seconds for the first coroutine and 4 seconds for the second coroutine:

yield from asyncio.sleep(sleep_time)

Then, we mark the future as complete and set its result with the help of future.set_
result().

There's more…
Swapping the sleep time between the coroutines, we invert the output results (we first do that 
for the second coroutine output):

C:\Python CookBook\Chapter 4- Asynchronous Programming\codes - Chapter 
4>python Asyncio_future.py 1 10
second coroutine (factorial) result = 3628800
first coroutine (sum of N integers) result = 1
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5
Distributed Python

In this chapter, we will cover the following recipes:

ff Using Celery to distribute tasks

ff How to create a task with Celery

ff Scientific computing with SCOOP

ff Handling map functions with SCOOP

ff Remote method invocation with Pyro4

ff Chaining objects with Pyro4

ff Developing a client-server application with Pyro4

ff Communicating sequential processes with PyCSP

ff Using MapReduce with Disco

ff A remote procedure call with RPyC

Introduction
The basic idea of distributed computing is to break each workload into an arbitrary number 
of tasks, usually indicated with the name, into reasonable pieces for which a computer in 
a distributed network will be able to finish and return the results flawlessly. In distributed 
computing, there is the absolute certainty that the machines on your network are always 
available (latency difference, unpredictable crash or network computers, and so on). So, you 
need a continuous monitoring architecture.
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The fundamental problem that arises from the use of this kind of technology is mainly 
focused on the proper management of traffic (that is devoid of errors both in transmission 
and reception) of any kind (data, jobs, commands, and so on). Further, a problem stems from 
a fundamental characteristic of distributed computing: the coexistence in the network of 
machines that support different operating systems which are often incompatible with others. 
In fact, the need to actually use the multiplicity of resources in a distributed environment has, 
over time, led to the identification of different calculation models. Their goal is essentially 
to provide a framework for the description of the cooperation between the processes of a 
distributed application. We can say that, basically, the different models are distinguished 
according to a greater or lesser capacity to use the opportunities provided by the distribution. 
The most widely used model is the client-server model. It allows processes located on 
different computers to cooperate in real time through the exchange of messages, thereby 
achieving a significant improvement over the previous model, which requires the transfer 
of all the files, in which computations are performed on the data offline. The client-server 
model is typically implemented through remote procedure calls, which extend the scope of a 
local call, or through the paradigm of distributed objects (Object-Oriented Middleware).This 
chapter will then present some of the solutions proposed by Python for the implementation of 
these computing architectures. We will then describe the libraries that implement distributed 
architectures using the OO approach and remote calls, such as Celery, SCOOP, Pyro4, and 
RPyC, but also using different approaches, such as PyCSP and Disco, which are the Python 
equivalent of the MapReduce algorithm.

Using Celery to distribute tasks
Celery is a Python framework used to manage a distributed task, following the Object-Oriented 
Middleware approach. Its main feature consists of handling many small tasks and distributing 
them on a large number of computational nodes. Finally, the result of each task will then be 
reworked in order to compose the overall solution.

To work with Celery, we need the following components:

ff The Celery module (of course!!)

ff A message broker. This is a Celery-independent software component, the middleware, 
used to send and receive messages to distributed task workers. A message broker 
is also known as a message middleware. It deals with the exchange of messages in 
a communication network. The addressing scheme of this type of middleware is no 
longer of the point-to-point type but is a message-oriented addressing scheme. The 
best known is the Publish/Subscribe paradigm.
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Messages awaiting dispatch
to a consumer

Broker will only dispatch
more messages when the
consumer has space

Broker

SubcribePublish

Producer

Producer waits until notified
by the broker it has more

Consumer sends an ack when
its consumed

Consumer

The message broker architecture

Celery supports many types of message brokers—the most complete of which are RabbitMQ 
and Redis.

How to do it…
To install Celery, we use the pip installer. In Command Prompt, just type the following:

pip install celery

After this, we must install the message broker. There are several choices available for us to 
do this, but in our examples, we use RabbitMQ, which is a message-oriented middleware 
(also called broker messaging), that implements the Advanced Message Queuing Protocol 
(AMQP). The RabbitMQ server is written in Erlang, and it is based on the Open Telecom 
Platform (OTP) framework for the management of clustering and failover. To install RabbitMQ, 
download and run Erlang (http://www.erlang.org/download.html), and then just 
download and run the RabbitMQ installer (http://www.rabbitmq.com/download.html). 
It takes a few minutes to download and will set up RabbitMQ and run it as a service with a 
default configuration.

Finally, we install Flower (http://flower.readthedocs.org), which is a web-based tool 
used to monitor tasks (running progress, task details, and graphs and stats).

To install it, just type the following from Command Prompt:

pip install –U flower

http://www.erlang.org/download.html
http://www.rabbitmq.com/download.html
http://flower.readthedocs.org
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Then, we can verify the Celery installation. In Command Prompt, just type the following:

C:\celery –-version

After this, the text shown as follows should appear:

3.1.18 (Cipater)

The usage of Celery is pretty simple, as shown:

Usage: celery <command> [options]

Here, the options are as shown:

Options:
  -A APP, --app=APP     app instance to use (e.g. module.attr_name)
  -b BROKER, --broker=BROKER
                        url to broker.  default is 'amqp://guest@
localhost//'
  --loader=LOADER       name of custom loader class to use.
  --config=CONFIG       Name of the configuration module
  --workdir=WORKING_DIRECTORY
                        Optional directory to change to after 
detaching.
  -C, --no-color
  -q, --quiet
  --version             show program's version number and exit
  -h, --help            show this help message and exit

See also
ff For more complete details about the Celery installation procedure, you can visit  

www.celeryproject.com

How to create a task with Celery
In this recipe, we'll show you how to create and call a task using the Celery module. Celery 
provides the following methods that make a call to a task:

ff apply_async(args[, kwargs[, …]]): This task sends a task message

ff delay(*args, **kwargs): This is a shortcut to send a task message, but does 
not support execution options

www.celeryproject.com
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The delay method is better to use because it can be called as a regular function:

task.delay(arg1, arg2, kwarg1='x', kwarg2='y')

While using apply_async you should write:

task.apply_async (args=[arg1, arg2] kwargs={'kwarg1': 'x','kwarg2': 
'y'})

How to do it…
To perform this simple task, we implement the following two simple scripts:

###
## addTask.py :Executing a simple task
###

from celery import Celery

app = Celery('addTask',broker='amqp://guest@localhost//')

@app.task
def add(x, y):
    return x + y
while the second script is :

###
#addTask.py : RUN the AddTask example with 
###

import addTask

if __name__ == '__main__':
    result = addTask.add.delay(5,5)

We must note again that the RabbitMQ service starts automatically on our server upon 
installation. So, to execute the Celery worker server, we simply type the following command 
from Command Prompt:

celery -A addTask worker --loglevel=info
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The output is shown in the first Command Prompt:

Let's note the warnings in the output to disable pickle as a serializer for security concerns. 
The default serialization format is pickle simply because it is convenient (it supports the task 
of sending complex Python objects as task arguments). Whether you use pickle or not, you 
may want to turn off this warning by setting the CELERY_ACCEPT_CONTENT configuration 
variable; for reference, take a look at http://celery.readthedocs.org/en/latest/
configuration.html.

Now, we launch the addTask_main script from a second Command Prompt:

http://celery.readthedocs.org/en/latest/configuration.html
http://celery.readthedocs.org/en/latest/configuration.html
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Finally, the result from the first Command Prompt should be like this:

The result is 10 (you can read it in the last line), as we expected.

How it works…
Let's focus on the first script, addTask.py. In the first two lines of code, we create a Celery 
application instance that uses the RabbitMQ service ad broker:

from celery import Celery
app = Celery('addTask', broker='amqp://guest@localhost//')

The first argument in the Celery function is the name of the current module (addTask.py) 
and the second argument is the broker keyboard argument, which indicates the URL used to 
connect the broker (RabbitMQ). Then, we introduce the task. Each task must be added with 
the annotation (decorator) @app.task.

The decorator helps Celery to identify which functions can be scheduled in the task queue. 
After the decorator, we create the task that the workers can execute. Our first task will be a 
simple function that performs the sum of two numbers:

@app.task
def add(x, y):
    return x + y

In the second script, AddTask_main.py, we call our task by using the delay() method:

if __name__ == '__main__':
    result = addTask.add.delay(5,5)

Let's remember that this method is a shortcut to the apply_async() method, which gives 
us greater control of the task execution.
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There's more…
If RabbitMQ operates under its default configuration, Celery can connect with no other 
information other than amqp://scheme.

Scientific computing with SCOOP
Scalable Concurrent Operations in Python (SCOOP) is a Python module to distribute 
concurrent tasks (called Futures) on heterogeneous computational nodes. Its architecture is 
based on the ØMQ package, which provides a way to manage Futures between the distributed 
systems. The main application of SCOOP resides in scientific computing that requires the 
execution of many distributed tasks using all the computational resources available.

To distribute its futures, SCOOP uses a variation of the broker patterns:

worker

broker

Worker originworker

worker

worker

worker

The SCOOP architecture

The central element of the communication system is the broker that interacts with all the 
independent workers to dispatch messages between them. The Futures are created in the 
worker elements instead of the central node (the broker) with a centralized serialization 
procedure. This makes the topology architecture more reliable and makes performance better. 
In fact, the broker's main workload consists of networking and interprocess I/O between 
workers with relatively low CPU processing time.
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Getting ready
The SCOOP module is available at https://github.com/soravux/scoop/ and its 
software dependencies are as follows:

ff Python >= 2.6 or >= 3.2

ff Distribute >= 0.6.2 or setuptools >= 0.7

ff Greenlet >= 0.3.4

ff pyzmq >= 13.1.0 and libzmq >= 3.2.0

ff SSH for remote execution

SCOOP can be installed on Linux, Mac, and Windows machines. Like Disco, its remote usage 
requires an SSH software, and it must be enabled as a password-less authentication between 
every computing node. For a complete reference about the SCOOP installation procedure, you 
can read the information guide at http://scoop.readthedocs.org/en/0.7/install.
html.

On a Windows machine, you can install SCOOP simply by typing the following command:

pip install SCOOP

Otherwise, you can type the following command from SCOOP's distribution directory:

Python setup.py install

How to do it…
SCOOP is a library full of functionality that is primarily used in scientific computing problems. 
Among the methods used to find a solution to these problems that are computationally 
expensive, there is the Monte Carlo algorithm. A complete discussion of this method would 
take up many pages of a book, but in this example, we want to show you how to parallelize a 
Monte Carlo method for the solution of the following problem, the calculation of the number π, 
using the features of SCOOP. So, let's consider the following code:

import math
from random import random
from scoop import futures
from time import time

https://github.com/soravux/scoop/
http://scoop.readthedocs.org/en/0.7/install.html
http://scoop.readthedocs.org/en/0.7/install.html
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def evaluate_number_of_points_in_unit_circle(attempts):
    points_fallen_in_unit_disk = 0
    for i in range (0,attempts) :
        x = random()
        y = random()
        radius = math.sqrt(x*x + y*y)
        #the test is ok if the point fall in the unit circle
        if radius < 1 :
            #if ok the number of points in a disk is increased
            points_fallen_in_unit_disk = \ 
                    points_fallen_in_unit_disk + 1
    return points_fallen_in_unit_disk

def pi_calculus_with_Montecarlo_Method(workers, attempts):
    print("number of workers %i - number of attempts %i" 
%(workers,attempts)) 
    bt = time()
    #in this point we call scoop.futures.map function
    #the evaluate_number_of_points_in_unit_circle \
    #function is executed in an asynchronously way
    #and several call this function can be made concurrently
    evaluate_task = \
                futures.map(evaluate_points_in_circle, 
                       [attempts] * workers)
    taskresult= sum(evaluate_task)
    print ("%i points fallen in a unit disk after " \
           %(Taskresult/attempts))
    piValue = (4. * Taskresult/ float(workers * attempts))
    
    computationalTime = time() - bt
    print("value of pi = " + str(piValue))
    print ("error percentage = " + \
           str((((abs(piValue - math.pi)) * 100) / math.pi)))
    print("total time: " + str(computationalTime))

if __name__ == "__main__":
    for i in range (1,4):
        #let's fix the numbers of workers...only two, 
        #but it could be much greater
        pi_calculus_with_Montecarlo_Method(i*1000, i*1000)
        print(" ")
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To run a SCOOP program, you must open Command Prompt and type the following 
instructions:

python –m scoop name_file.py

For our script, we'll expect output like this:

C:\Python CookBook\Chapter 5 - Distributed Python\chapter 5 - 
codes>python -m scoop pi_calculus_with_montecarlo_method.py

[2015-06-01 15:16:32,685] launcher  INFO    SCOOP 0.7.2 dev on win32 
using Python 3.3.0 (v3.3.0:bd8afb90e

bf2, Sep 29 2012, 10:55:48) [MSC v.1600 32 bit (Intel)], API: 1013

[2015-06-01 15:16:32,685] launcher  INFO    Deploying 2 worker(s) over 1 
host(s).

[2015-06-01 15:16:32,685] launcher  INFO    Worker d--istribution:

[2015-06-01 15:16:32,686] launcher  INFO       127.0.0.1:       1 + 
origin

Launching 2 worker(s) using an unknown shell.

number of workers 1000 - number of attempts 1000

785 points fallen in a unit disk after

value of pi = 3.140636

error percentage = 0.03045122952842962

total time: 10.258585929870605

number of workers 2000 - number of attempts 2000

1570 points fallen in a unit disk after

value of pi = 3.141976

error percentage = 0.012202295220195048

total time: 20.451170206069946

number of workers 3000 - number of attempts 3000

2356 points fallen in a unit disk after

value of pi = 3.1413777777777776

error percentage = 0.006839709526630775

total time: 32.3558509349823

[2015-06-01 15:17:36,894] launcher  (127.0.0.1:59239) INFO    Root 
process is done.

[2015-06-01 15:17:36,896] launcher  (127.0.0.1:59239) INFO    Finished 
cleaning spawned subprocesses.
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The correct value of pi becomes more precise as we increase the number of attempts and 
workers.

Monte Carlo evaluation of π: counting points inside the circle

How it works…
The code presented in the preceding section is just one of the many implementations of 
the Monte Carlo method for the calculation of π. The evaluate_ points_in_circle 
() function is taken randomly and then given a point of coordinates (x, y), and then it is 
determined whether or not this point falls within the circle of the unit area.

Whenever the points_fallen_in_unit_disk condition is verified, the variable is 
incremented. When the inner loop of the function ends, it will represent the total number of 
points falling within the circle. This number is sufficient to calculate the value of pi. In fact, the 
probability that the point falls within the circumference is π / 4, that is  the ratio between the 
area of the unit circle, equal to π and the area of the circumscribed square equal to 4.

So, by calculating the ratio between the number of points fallen inside the disc, taskresult, 
and the number of shots made, workers * attempts, you obtain an approximation of π/4 and 
of course, also of the number π:

piValue = (  4. * taskresult / float (workers attempts *))

The SCOOP function is as shown:

futures.map (evaluate_points_in_circle, [attempts] * workers)

This takes care of distributing the computational load between the available workers and at 
the same time, collects all the results. It executes evaluate_points_in_circle in an 
asynchronous way and makes several calls to evaluate_points_in_circle concurrently.
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Handling map functions with SCOOP
A common task that is very useful when dealing with lists or other sequences of data is to 
apply the same operation to each element of the list and then collect the result. For example, 
a list update may be done in the following way from the Python IDLE:

>>>items = [1,2,3,4,5,6,7,8,9,10]

>>>updated_items = []

>>>for x in items:

>>>    updated_items.append(x*2)

>>> updated_items

>>>  [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

This is a common operation. However, Python has a built-in feature that does most of the 
work.

The Python function map(aFunction, aSequence) applies a passed-in function to each 
item in an iterable object and returns a list containing all the function call results. Now, the 
same example would be:

>>>items = [1,2,3,4,5,6,7,8,9,10]

>>>def multiplyFor2(x):return x*2

>>>print(list(map(multiplyFor2,items)))

>>>[2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

Here, we passed in the map function the user-defined function multiplyFor2. It is applied to 
each item in the items list, and finally, we collect the result in a new list that is printed.

Also, we can pass in a lambda function (a function defined and called without being bound to 
an identifier) as an argument instead of a function. The same example now becomes:

>>>items = [1,2,3,4,5,6,7,8,9,10]

>>>print(list(map(lambda x:x*2,items)))

>>>[2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

The map built-in function has performance benefits because it is faster than a manually 
coded for loop.
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Getting ready
The SCOOP Python modules define more than one map function that allow asynchronous 
computation that could be propagated to its workers. These functions are:

ff futures.map((func, iterables, kargs): This returns a generator that 
iterates the results in the same order as its inputs. It can thus act as a parallel 
substitute for the standard Python map() function.

ff futures.map_as_completed(func, iterables, kargs): This will yield 
results as soon as they are made available.

ff futures. scoop.futures.mapReduce(mapFunc, reductionOp, 
iterables, kargs): This allows us to parallelize a reduction function after we 
apply the map() function. It returns a single element.

How to do it…
In this example, we'll compare the MapReduce version of SCOOP with its serial 
implementation:

"""
Compare SCOOP MapReduce with a serial implementation
"""
import operator
import time

from scoop import futures

def simulateWorkload(inputData):
    time.sleep(0.01)
    return sum(inputData)

def CompareMapReduce():
    mapScoopTime = time.time()
    res = futures.mapReduce(
        simulateWorkload,
        operator.add,
        list([a] * a for a in range(1000)),
    )
    mapScoopTime = time.time() - mapScoopTime
    print("futures.map in SCOOP executed in {0:.3f}s \
           with result:{1}".format(
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        mapScoopTime,
        res
        )
    )

    mapPythonTime = time.time()
    res = sum(
        map(
            simulateWorkload,
            list([a] * a for a in range(1000))
        )
    )
    mapPythonTime = time.time() - mapPythonTime
    print("map Python executed in: {0:.3f}s \
           with result: {1}".format(
        mapPythonTime,
        res
        )
    )    

if __name__ == '__main__':
    CompareMapReduce()

To evaluate the script, you must type the following command:

python -m scoop map_reduce.py

> [2015-06-12 20:13:25,602] launcher  INFO    SCOOP 0.7.2 dev on win32 
using Python 3.4.3 (v3.4.3:9b73f1c3e601, Feb 24 2015, 22:43:06) [MSC 
v.1600 32 bit (Intel)], API: 1013

[2015-06-12 20:13:25,602] launcher  INFO Deploying 2 worker(s) over 1 
host(s).

[2015-06-12 20:13:25,602] launcher  INFO Worker d--istribution:

[2015-06-12 20:13:25,602] launcher  INFO 127.0.0.1:       1 + origin

Launching 2 worker(s) using an unknown shell.

futures.map in SCOOP executed in 8.459s with result: 332833500

map Python executed in: 10.034s with result: 332833500

[2015-06-12 20:13:45,344] launcher  (127.0.0.1:2559) INFO    Root process 
is done.

[2015-06-12 20:13:45,368] launcher  (127.0.0.1:2559) INFO    Finished 
cleaning spawned subprocesses.
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How it works…
In this example, we compare the SCOOP implementation of the MapReduce function with 
the serial implementation. The core of the script is the CompareMapReduce() function 
that contains the two implementations. Also in this function, we evaluate the execution time 
according to the following schema:

mapScoopTime = tme.time()
         #Run SCOOP MapReduce
mapScoopTime = time.time() – mapScoopTime

mapPythonTime = time.time()
         #Run serial MapReduce
mapPythonTime = time.time() - mapPythonTime

Then in the output, we report the resulting time:

futures.map in SCOOP executed in 8.459s with result: 332833500

map Python executed in: 10.034s with result: 332833500

To obtain the comparable execution time, we simulate a computational workload that 
introduces a time.sleep statement in the simulatedWordload function:

def simulateWorkload(inputData, chose=None):
    time.sleep(0.01)
    return sum(inputData)

The SCOOP implementation of mapReduce is as follows:

res = futures.mapReduce(
        simulateWorkload,
        operator.add,
        list([a] * a for a in range(1000)),
    )

The futures-mapReduce function has the following arguments:

ff simulateWork: This will be called to execute the Futures. We also need to 
remember that a callable must return a value.

ff operator.add: This will be called to reduce the Futures results. However, it also 
must support two parameters and return a single value.

ff list(…… ): This is the iterable object that will be passed to the callable object as a 
separate Future.
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The serial implementation of mapReduce is, as follows:

    res = sum(
        map(
            simulateWorkload,
            list([a] * a for a in range(1000))
        )
    )

The Python standard map() function has two arguments: the simulateWorkload function 
and the list() iterable object. However, to reduce the result, we used the Python function 
sum.

Remote Method Invocation with Pyro4
Python Remote Objects (Pyro4) is a library that resembles Java's Remote Method Invocation 
(RMI), which allows you to invoke a method of a remote object (that belongs to a different 
process and is potentially on a different machine) almost as if the object were local (that is, 
it belonged to the same process in which it runs the invocation). In this sense, the Remote 
Method Invocation technology can be traced from a conceptual point of view. The idea of a 
remote procedure call (RPC) is reformulated for the object-oriented paradigm (in which, of 
course, the procedures are replaced by methods). The use of a mechanism for remote method 
invocation in an object-oriented system entails the significant advantages of uniformity and 
symmetry in the project, since it allows us to model the interactions between distributed 
processes using the same conceptual tool that is used to represent the interactions between 
the different objects of an application or the method call.

Application

Server

Stubs Skeletons

Remote Reference Layer (RRL) RMI System

Transport

Network

Transport

Client

Remote Method Invocation
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As you can see from the preceding figure, Pyro4 allows us to manage and distribute objects in 
the client-server style. This means that the main parts of a Pyro4 system may switch from a 
client called to a remote object to an object called to serve a function. It is important to note 
that during the remote calling, there are always two distinct parts that a client and server 
accepts and executes the client call. Finally, the entire management of this mechanism is 
provided by Pyro4 in a distributed way.

Getting ready
The installation procedure is quite simple with the pip installer; from your command shell, 
type: pip install pyro.

Otherwise, you can download the complete package from https://github.com/irmen/
Pyro4 and install the package with the Python setup.py install command from the package 
directory.

For our examples, we'll use a Python3.3 distro on a Windows machine.

How to do it…
In this example, we'll see how to build and use a simple client-server communication using the 
Pyro4 middleware. So, we must have two Python scripts.

The code for the server (server.py) is:

import Pyro4

class Server(object):
    def welcomeMessage(self, name):
        return ("Hi welcome " + str (name))

def startServer():
    server = Server()
    daemon = Pyro4.Daemon() 
    ns = Pyro4.locateNS()
    uri = daemon.register(server)  
    ns.register("server", uri)  
    print("Ready. Object uri =", uri)
    daemon.requestLoop()                   

if __name__ == "__main__":
    startServer()

https://github.com/irmen/Pyro4
https://github.com/irmen/Pyro4
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The code for the client (client.py) is as follows:

import Pyro4

uri = input("What is the Pyro uri of the greeting object? ").strip()
name = input("What is your name? ").strip()
server = Pyro4.Proxy("PYRONAME:server")    
print(server.welcomeMessage(name))

To run the example, we need a Pyro name server running. To do this, you can type the 
following command from Command Prompt:

python  -m Pyro4.naming

After this, you'll see the following message:

This means that the name server is running in your network. Then, you can start the server 
and the client scripts in two separate console windows. To run the server, just type the 
following:

python server.py

Now, you'll see something similar to what is shown in the following screenshot:
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To run the client, just type:

python client.py

After this, a message like this will appear:

insert the PYRO4 server URI (help : PYRONAME:server)

After the correct insertion, you must insert the name of the Pyro4 server, that is, 
PYRONAME:server:

insert the PYRO4 server URI (help : PYRONAME:server) PYRONAME:server

You'll see the following message asking you to type your name:

What is your name? Rashmi

Finally, you'll see a welcome message, Hi welcome Rashmi, as shown in the following 
screenshot:

How it works…
The server contains the object (the Server class) that can be accessed remotely. In our 
example, this object only has the welcomeMessage() method that returns a string with  
the name inserted in the client session:

class Server(object):
    def welcomeMessage(self, name):
        return ("Hi welcome " + str (name))

To start the server (the startServer() function), we must follow some simple steps:

1.	 Build the instance (named server) of the Server class: server = Server().
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2.	 Make a Pyro daemon: daemon = Pyro4.Daemon(). Pyro4 uses daemon objects to 
dispatch incoming calls to appropriate objects. A server must create one daemon that 
manages everything from its instance. Each server has a daemon that knows about 
all the Pyro objects that the server provides.

3.	 To execute this script, we have to run a Pyro name server. So, we have to locate this 
name server that runs: ns = Pyro4.locateNS().

4.	 Then, we need to register the server as Pyro Object object. It will be known only 
inside the Pyro daemon: uri = daemon.register(server). It returns the URI for 
the registered object.

5.	 Finally, we can register the object server with a name in the name server:
ns.register("server", uri).

6.	 The function ends with a call to daemon's eventloop method. It starts the event 
loop of the server and waits for calls.

The Pyro4 API enables the developer to distribute objects in a transparent way. Our client 
scripts send the requests to the server program to execute the welcomeMessage() method. 
The remote call is performed first by creating a Proxy object. In fact, Pyro4 clients use proxy 
objects to forward method calls to the remote objects and pass results back to the calling code:

server = Pyro4.Proxy("PYRONAME:server")   

Now, we'll call the server's method that prints a welcome message:

print(server.welcomeMessage(name))

Chaining objects with Pyro4
In this recipe, we'll show you how to create a chain of objects, which call each other, with 
Pyro4. Let's suppose that we want to build a distributed architecture like this:

Server 1

Client

Server 3 Server 2

Chaining an object with Pyro4
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We have four objects: a client and three servers disposed in a chain topology, as shown in the 
preceding figure. The client forwards a request to Server1 and starts the chain call, forwarding 
the request to Server2. Then, it calls the next object in the chain and Server3. The chain call 
ends when Server3 calls Server1 again.

The example we're going to show highlights the aspects of the management of remote 
objects, which can be easily extended to handle more complex distributed architectures.

How to do it…
To implement a chain of objects with Pyro4, we need five Python scripts. The first one is the 
client (client.py). Here is the code for it:

from __future__ import print_function
import Pyro4

obj = Pyro4.core.Proxy("PYRONAME:example.chain.A")
print("Result=%s" % obj.process(["hello"]))

Each server will be characterized by the parameter this, which identifies it in the chain, and 
the parameter next, which defines the next server (that is, subsequent to this) in the chain.

For a visualization of the implemented chain you can see the figure associated with this recipe.

ff server_1.py:
from __future__ import print_function
import Pyro4
import chainTopology

this = "1"
next = "2"

servername = "example.chainTopology." + this

daemon = Pyro4.core.Daemon()
obj = chainTopology.Chain(this, next)
uri = daemon.register(obj)
ns = Pyro4.naming.locateNS()
ns.register(servername, uri)

# enter the service loop.
print("server_%s started " % this)
daemon.requestLoop()
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ff server_2.py:
from __future__ import print_function
import Pyro4
import chainTopology

this = "2"
next = "3"

servername = "example.chainTopology." + this

daemon = Pyro4.core.Daemon()
obj = chain.chainTopology(this, next)
uri = daemon.register(obj)
ns = Pyro4.naming.locateNS()
ns.register(servername, uri)

# enter the service loop.
print("server_%s started " % this)
daemon.requestLoop()

ff server_3.py:

from __future__ import print_function
import Pyro4
import chainTopology

this = "3"
next = "1"

servername = "example.chainTopology." + this

daemon = Pyro4.core.Daemon()
obj = chain.chainTopology(this, next)
uri = daemon.register(obj)
ns = Pyro4.naming.locateNS()
ns.register(servername, uri)

# enter the service loop.
print("server_%s started " % this)
daemon.requestLoop()
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The last script is the chain object, as shown in the following code:

ff chainTopology.py:

from __future__ import print_function
import Pyro4

class Chain(object):
    def __init__(self, name, next):
        self.name = name
        self.nextName = next
        self.next = None

    def process(self, message):
        if self.next is None:
            self.next = Pyro4.core.Proxy("PYRONAME:example.chain." 
\  
                                          + self.nextName)
        if self.name in message:
            print("Back at %s; the chain is closed!" % self.name)
            return ["complete at " + self.name]
        else:
            print("%s forwarding the message to the object %s" \ 
                  % (self.name, self.nextName))
            message.append(self.name)
            result = self.next.process(message)
            result.insert(0, "passed on from " + self.name)
            return result

To execute this example, start by running the Pyro4 name server:

C:>python -m Pyro4.naming

Not starting broadcast server for localhost.

NS running on localhost:9090 (127.0.0.1)

Warning: HMAC key not set. Anyone can connect to this server!

URI = PYRO:Pyro.NameServer@localhost:9090

Then, run the three servers. In three separate Command Prompts, type the python server_
name.py command.
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A message like this should appear after this for server_1:

For server_2, something similar to what is shown in the following screenshot will appear:

A message similar to what is shown in the following screenshot should appear for server_3:

Finally, you must run the client.py script from another command shell:

The preceding message shows as a result the forwarding request passed across the three 
servers, when it comes back to server_1 the task is completed. Also, here, we can focus 
on the behavior of the object servers when the request is forwarded to the next object in 
the chain. To see what happens next, refer to the message below the start message in the 
following screenshot for server_1:
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The result of server_2 is as follows:

The result of server_3 is as follows:

How it works…
The core of this example is the Chain class that we defined in the chainTopology.
py script. It allows communication between the three servers. In fact, each server calls 
the class to find out which is the next element in the chain (refer to the method process in 
chainTopology.py). Also, it executes the call with the Pyro4.core.proxy statement:

if self.next is None:
            self.next = Pyro4.core.Proxy("PYRONAME:example.
chainTopology." + self.nextName)

If the chain is closed (the last call is done from server_3 to server_1), a closing message 
is printed out:

if self.name in message:
            print("Back at %s; the chain is closed!" % self.name)
            return ["complete at " + self.name]

A forwarding message is printed out if there is a next element in the chain:

print("%s forwarding the message to the object %s" % (self.name, self.
nextName))
            message.append(self.name)
            result = self.next.process(message)
            result.insert(0, "passed on from " + self.name)
            return result
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The code for the server is the same and only differs on the definition of the current element 
and the next element of the chain, for example, this is the definition for the first server 
(server_1):

this = "1"
next = "2"

The remaining lines of the following code define, in the same manner as the previous 
example, the communication with the next element in the chain:

servername = "example.chainTopology." + this
daemon = Pyro4.core.Daemon()
obj = chainTopology.Chain(this, next)
uri = daemon.register(obj)
ns = Pyro4.naming.locateNS()
ns.register(servername, uri)
daemon.requestLoop()

Finally, in the client script, we start the process by calling the first element (server 1) in the 
chain:

obj = Pyro4.core.Proxy("PYRONAME:example.chainTopology.1")

Developing a client-server application with 
Pyro4

In this recipe, we'll show you how to build a simple client-server application with Pyro4. The 
application that we'll show here is not complete, but is equipped with all the methods that  
will successfully complete and improve it.

A client-server application indicates a network architecture in which, generally, a client 
computer or terminal connects to a server for the use of a certain service, such as the sharing  
of a certain resource hardware/software with other clients and relying on the underlying 
protocol architecture. In our system, the server manages an online shopping site, while the 
clients manage the customers that are registered on this site and connect to it for shopping.

How to do it…
For the sake of simplicity, we have three scripts. The first one represents the object client 
in which we have customer management, the second script is the object shop, and the third 
script is the object server.



Distributed Python

178

For the server (server.py), the code is as follows:

#
#   The Shops server
#

from __future__ import print_function
import Pyro4
import shop

ns = Pyro4.naming.locateNS()
daemon = Pyro4.core.Daemon()
uri = daemon.register(shop.Shop())
ns.register("example.shop.Shop", uri)
print(list(ns.list(prefix="example.shop.").keys()))
daemon.requestLoop()

The code for the client (client.py) is as follows:

from __future__ import print_function
import sys
import Pyro4

# A Shop client.
class client(object):
    def __init__(self, name , cash):
        self.name = name
        self.cash = cash
    def doShopping_deposit_cash(self, Shop):
        print("\n*** %s is doing shopping with %s:"\
              % (self.name, Shop.name()))
        print("Log on")
        Shop.logOn(self.name)
        print("Deposit money %s" %self.cash)
        Shop.deposit(self.name, self.cash)
        print("balance=%.2f" % Shop.balance(self.name))
        print("Deposit money %s" %self.cash)
        Shop.deposit(self.name, 50)
        print("balance=%.2f" % Shop.balance(self.name))
        print("Log out")
        Shop.logOut(self.name)
      
    def doShopping_buying_a_book(self, Shop):
        print("\n*** %s is doing shopping with %s:"\



Chapter 5

179

              % (self.name, Shop.name()))
        print("Log on")
        Shop.logOn(self.name)
        print("Deposit money %s" %self.cash)
        Shop.deposit(self.name, self.cash)
        print("balance=%.2f" % Shop.balance(self.name))
        print ("%s is buying a book for %s$"\
               %(self.name,37))
        Shop.buy(self.name,37)
        print("Log out")
        Shop.logOut(self.name)
 
if __name__ == '__main__':
    ns = Pyro4.naming.locateNS()
    uri = ns.lookup("example.shop.Shop")
    print(uri)
    Shop = Pyro4.core.Proxy(uri)
    meeta = client('Meeta',50)
    rashmi = client('Rashmi',100)
    rashmi.doShopping_buying_a_book(Shop)
    meeta.doShopping_deposit_cash(Shop)
    print("")
    print("")
    print("")
    print("")
    
    print("The accounts in the %s:" % Shop.name())
    accounts = Shop.allAccounts()
    for name in accounts.keys():
              print("  %s : %.2f"\
                    % (name, accounts[name]))

This is the code for the object shop (shop.py):

class Account(object):
    def __init__(self):
        self._balance = 0.0

    def pay(self, price):
        self._balance -= price

    def deposit(self, cash):
        self._balance += cash
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    def balance(self):
        return self._balance

class Shop(object):
    def __init__(self):
        self.accounts = {}
        self.clients = ['Meeta','Rashmi','John','Ken']

    def name(self):
        return 'BuyAnythingOnline'

    def logOn(self, name):
        if name in self.clients :
            self.accounts[name] = Account()
        else :
            self.clients.append(name)
            self.accounts[name] = Account()

    def logOut(self, name):
        print('logout %s' %name)
   
    def deposit(self, name, amount):
        try:
            return self.accounts[name].deposit(amount)
        except KeyError:
            raise KeyError('unknown account')

    def balance(self, name):
        try:
            return self.accounts[name].balance()
        except KeyError:
            raise KeyError('unknown account')

    def allAccounts(self):
        accs = {}
        for name in self.accounts.keys():
            accs[name] = self.accounts[name].balance()
        return accs

    def buy(self,name,price):
        balance = self.accounts[name].balance()
        self.accounts[name].pay(price)
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To execute the code, you must first enable the Pyro4 name sever:

C:>python -m Pyro4.naming

Not starting broadcast server for localhost.

NS running on localhost:9090 (127.0.0.1)

Warning: HMAC key not set. Anyone can connect to this server!

URI = PYRO:Pyro.NameServer@localhost:9090

Then, start the server by using the python server.py command. A shell like the one shown 
in the following screenshot will appear when you do this:

Finally, you should start the customer simulation with the following command:

python client.py

The following text will be printed out with the use of the following command:

C:\Users\Utente\Desktop\Python CookBook\Python Parallel Programming 
INDEX\Chapter 5 - Distributed Python\

chapter 5 - codes\banks>python client.py

PYRO:obj_8c4a5b4ae7554c2c9feee5b0113902e0@localhost:59225

*** Rashmi is doing shopping with BuyAnythingOnline:

Log on

Deposit money 100

balance=100.00

Rashmi is buying a book for 37$

Log out

*** Meeta is doing shopping with BuyAnythingOnline:

Log on

Deposit money 50

balance=50.00
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Deposit money 50

balance=100.00

Log out

The accounts in the BuyAnythingOnline:

  Meeta : 100.00

  Rashmi : 63.00

This output shows a simple session for two customers, Meeta and Rashmi.

How it works…
The server side of the application must locate the Shop() object, calling the statement:

ns = Pyro4.naming.locateNS()

Then, it must enable a communication channel:

daemon = Pyro4.core.Daemon()
uri = daemon.register(shop.Shop())
ns.register("example.shop.Shop", uri)
daemon.requestLoop()

The shop.py script contains classes for account and shop management. The shop class 
manages each account. It provides methods to log in and log out, manage customer's money, 
and to buy items:

class Shop(object):

    def logOn(self, name):
        if name in self.clients :
            self.accounts[name] = Account()
        else :
            self.clients.append(name)
            self.accounts[name] = Account()

    def logOut(self, name):
        print('logout %s' %name)
   
    def deposit(self, name, amount):
        try:
            return self.accounts[name].deposit(amount)
        except KeyError:
            raise KeyError('unknown account')
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    def balance(self, name):
        try:
            return self.accounts[name].balance()
        except KeyError:
            raise KeyError('unknown account')

    def buy(self,name,price):
        balance = self.accounts[name].balance()
        self.accounts[name].pay(price)

Each customer has their own Account object that provides methods for customer deposit 
management:

class Account(object):
    def __init__(self):
        self._balance = 0.0

    def pay(self, price):
        self._balance -= price

    def deposit(self, cash):
        self._balance += cash

    def balance(self):
        return self._balance

Finally, the client.py script contains the class that is used to start the simulation. In the 
main program, we instantiate two customers, Rashmi and Meeta:

meeta = client('Meeta',50)
rashmi = client('Rashmi',100)
rashmi.doShopping_buying_a_book(Shop)
meeta.doShopping_deposit_cash(Shop)

They deposit some cash end on the site and then start with their shopping as shown:

ff Rashmi buys a book:
def doShopping_buying_a_book(self, Shop):
        Shop.logOn(self.name)
        Shop.deposit(self.name, self.cash)
        Shop.buy(self.name,37)
        Shop.logOut(self.name)
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ff Meeta twice deposits $100 in her account:
def doShopping_deposit_cash(self, Shop):
    Shop.logOn(self.name)
    Shop.deposit(self.name, self.cash)
    Shop.deposit(self.name, 50)
    Shop.logOut(self.name)

ff At the end of the simulation, the main program reports the count's deposit of Meeta 
and Rashmi:

print("The accounts in the %s:" % Shop.name())
    accounts = Shop.allAccounts()
    for name in accounts.keys():
              print("  %s : %.2f"\
                    % (name, accounts[name]))

Communicating sequential processes with 
PyCSP

PyCSP is a Python module based on communicating sequential processes, which is a 
programming paradigm developed to build concurrent programs via message passing. The 
PyCSP module is characterized by:

ff The exchange of messages between processes

ff The possibility of using a thread to use shared memory

ff The exchange of messages is done through channels

The channels allow:

ff An exchange of values between processes

ff The synchronization of processes

PyCSP allows the use of different channel types: One2One, One2Any, Any2One, and Any2One. 
These names indicate the number of writers and readers that can communicate over the 
channel.

Getting ready
PyCSP can be installed using the pip installer via the following command:

pip install python-csp

Also, it is possible to download the entire distribution from GitHub (https://github.com/
futurecore/python-csp).

https://github.com/futurecore/python-csp
https://github.com/futurecore/python-csp
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Download it and then type the following from the installation directory:

python setup.py install

For our examples, we will use the Python Version 2.7

How to do it…
In this first example, we want to introduce the basic concepts of PyCSP, the processes, and 
channels. So, we have defined two processes named counter and printer. We now want to see 
how to define the communication between these processes:

Let's consider the following code:

from pycsp.parallel import *

@process
def processCounter(cout, limit):
  for i in xrange(limit):
    cout(i)
  poison(cout)

@process
def processPrinter(cin):
  while True:
    print cin(),

A = Channel('A')
Parallel(
  processCounter(A.writer(), limit=5),
  processPrinter(A.reader())
)

shutdown()

To execute this code, simply press the run button on the Python2.7 IDLE. An output like this 
will be shown after this:

Python 2.7.9 (default, Dec 10 2014, 12:28:03) [MSC v.1500 64 bit (AMD64)] 
on win32

Type "copyright", "credits" or "license()" for more information.

>>> ========================RESTART ==========================

>>> 

0 1 2 3 4

>>> 
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How it works…
In this example, we used the functions defined in the pycsp.parallel module:

from pycsp.parallel import *

This module has the Any2Any channel type, which allows multiple processes, which are 
attached to the ends of the channels, to communicate through it. To create the channel A,  
we use the following statement:

A = Channel('A')

This new channel is automatically hosted in the current Python interpreter. For each Python 
interpreter that imports the pycsp.parallel module, only a port that handles all the 
channels started in the Python interpreter will be listed. However, this module does not 
provide a name server available for the channels. So to connect to a hosted channel, you 
must know the right location.

For example, to connect the channel B to the localhost port 8888, we input the following code:

A = pycsp.Channel('B', connect=('localhost, 8888))

In PyCSP, we have three basic ways to manage a channel:

ff channel.Disconnect(): This allows the Python interpreter to quit. It is used in a 
client-server setting, where a client wants to be Disconnected after it receives a reply 
from a server.

ff channel.reader(): This creates and returns the reader end of the channel.

ff channel.writer(): This creates and returns the writer end of the channel.

To indicate a process, we use the @process decorator. In PyCSP, each generated CSP 
process is implemented as a single OS thread. In this example, we have two processes: a 
counter and a printer. The process counter has two arguments: cout to redirect its output and 
limit, which defines the total number of items to be printed:

@process
def counter(cout, limit):
  for i in xrange(limit):
    cout(i)
  poison(cout)

The poison statement, poison(cout), means that the channel end is poisoned. This means 
that all subsequent reads and writes on this channel will throw an exception that can be used 
to end the current procedure or Disconnect the channel. We also note that the poisoning may 
cause a race condition if there are multiple concurrent procedures.
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The process printer only has one argument, which is the item to print, defined in the cin 
variable:

@process
def printer(cin):
  while True:
    print cin(),

The core of the script is in the following line of code:

A = Channel('A')

This defines the A channel, which permits communication between the two processes.

Finally, the Parallel statement is as follows:

Parallel(
  counter(A.writer(), limit=10),
  printer(A.reader())
)

This starts all the processes and blocks them only if the counter and process have terminated 
communication with each other. This statement represents the basic idea of CSP: concurrent 
processes synchronize with each other by synchronizing their I/O through the channel A. The 
way to do this is to allow I/O to occur only when a process counter states that it is ready to 
output to a process printer specifically and the process printer states that it is ready to input 
from a process counter. If one of these happens without the other being true, the process is 
put in a wait queue until the other process is ready.

Each PyCSP application creates a server thread to manage the incoming communication over 
the channels. So, it is always necessary to terminate each PyCSP application with a call to the 
shutdown() method:

shutdown()

PyCSP provides two methods to trace its execution:

ff TraceInit(<filename>, stdout=<True | False>): This is used to start  
the trace

ff TraceQuit(): This is used to stop the trace
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These must be placed in the following schema:

from pycsp.common.trace import *

TraceInit("trace.log")

"""
 PROCESSES TO BE TRACED

"""

TraceQuit()
shutdown()

For our example, we have built the log trace (with a limit count equal to three):

{'chan_name': 'A', 'type': 'Channel'}

{'chan_name': 'A', 'type': 'ChannelEndWrite'}

{'chan_name': 'A', 'type': 'ChannelEndRead'}

{'processes': [{'func_name': 'processCounter', 'process_id': 
'9cb4b3720ed111e5bb4c0024813d643d.processCounter'}, {'func_name': 
'processPrinter', 'process_id': '9cb63a0f0ed111e5993a0024813d643d.
processPrinter'}], 'process_id': '9c42428f0ed111e59ba10024813d643d.__
INIT__', 'type': 'BlockOnParallel'}

{'func_name': 'processCounter', 'process_id': 
'9cb4b3720ed111e5bb4c0024813d643d.processCounter', 'type': 
'StartProcess'}

{'func_name': 'processPrinter', 'process_id': 
'9cb63a0f0ed111e5993a0024813d643d.processPrinter', 'type': 
'StartProcess'}

{'process_id': '9cb4b3720ed111e5bb4c0024813d643d.processCounter', 'chan_
name': 'A', 'type': 'BlockOnWrite', 'id': 0}

{'process_id': '9cb63a0f0ed111e5993a0024813d643d.processPrinter', 'chan_
name': 'A', 'type': 'BlockOnRead', 'id': 0}

{'process_id': '9cb63a0f0ed111e5993a0024813d643d.processPrinter', 'chan_
name': 'A', 'type': 'DoneRead', 'id': 0}

{'process_id': '9cb4b3720ed111e5bb4c0024813d643d.processCounter', 'chan_
name': 'A', 'type': 'DoneWrite', 'id': 0}

{'process_id': '9cb4b3720ed111e5bb4c0024813d643d.processCounter', 'chan_
name': 'A', 'type': 'BlockOnWrite', 'id': 1}

{'process_id': '9cb63a0f0ed111e5993a0024813d643d.processPrinter', 'chan_
name': 'A', 'type': 'BlockOnRead', 'id': 1}
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{'process_id': '9cb63a0f0ed111e5993a0024813d643d.processPrinter', 'chan_
name': 'A', 'type': 'DoneRead', 'id': 1}

{'process_id': '9cb4b3720ed111e5bb4c0024813d643d.processCounter', 'chan_
name': 'A', 'type': 'DoneWrite', 'id': 1}

{'process_id': '9cb4b3720ed111e5bb4c0024813d643d.processCounter', 'chan_
name': 'A', 'type': 'BlockOnWrite', 'id': 2}

{'process_id': '9cb63a0f0ed111e5993a0024813d643d.processPrinter', 'chan_
name': 'A', 'type': 'BlockOnRead', 'id': 2}

{'process_id': '9cb63a0f0ed111e5993a0024813d643d.processPrinter', 'chan_
name': 'A', 'type': 'DoneRead', 'id': 2}

{'process_id': '9cb4b3720ed111e5bb4c0024813d643d.processCounter', 'chan_
name': 'A', 'type': 'DoneWrite', 'id': 2}

{'process_id': '9cb4b3720ed111e5bb4c0024813d643d.processCounter', 'chan_
name': 'A', 'type': 'Poison', 'id': 3}

{'func_name': 'processCounter', 'process_id': 
'9cb4b3720ed111e5bb4c0024813d643d.processCounter', 'type': 'QuitProcess'}

{'process_id': '9cb63a0f0ed111e5993a0024813d643d.processPrinter', 'chan_
name': 'A', 'type': 'BlockOnRead', 'id': 3}

{'func_name': 'processPrinter', 'process_id': 
'9cb63a0f0ed111e5993a0024813d643d.processPrinter', 'type': 'QuitProcess'}

{'process_id': '9cb63a0f0ed111e5993a0024813d643d.processPrinter', 'chan_
name': 'A', 'type': 'Poison', 'id': 3}

{'processes': [{'func_name': 'processCounter', 'process_id': 
'9cb4b3720ed111e5bb4c0024813d643d.processCounter'}, {'func_name': 
'processPrinter', 'process_id': '9cb63a0f0ed111e5993a0024813d643d.
processPrinter'}], 'process_id': '9c42428f0ed111e59ba10024813d643d.__
INIT__', 'type': 'DoneParallel'}

{'type': 'TraceQuit'}

There's more…
CSP is a formal language used to describe the interactions of concurrent processes. It falls 
under the mathematical theory of competition, which is known as algebra processes. It has 
been used in practice as a tool for the specification and verification of the competition aspects 
of a wide variety of systems. The rules of the CSP-inspired programming language Occam are 
now widely used as a parallel programming language.

For those of you who are interested in CSP's theory, we suggest you go 
through Hoare's original book, which is available online at http://www.
usingcsp.com/cspbook.pdf.

http://www.usingcsp.com/cspbook.pdf
http://www.usingcsp.com/cspbook.pdf
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Using MapReduce with Disco
Disco is a Python module based on the MapReduce framework introduced by Google, which 
allows the management of large distributed data in computer clusters. The applications 
written using Disco can be performed in the economic cluster of machines with a very short 
learning curve. In fact, the technical difficulties related to the processes that are distributed as 
load balancing, job scheduling, and the communications protocol are completely managed by 
Disco and hidden from the developer.

The typical applications of this module are essentially as follows:

ff Web indexing

ff URL access counter

ff Distributed sort

Input
Data

Input
Data #1

Map
Instance

#1

Reduce
Instance

Map
Instance

#N
Input
Data #N

Output
Data

The MapReduce schema

The MapReduce algorithm implemented in Disco is as follows:

ff Map: The master node takes the input data, breaks it into smaller subtasks, 
and distributes the work to the slave nodes. The single map node produces the 
intermediate result of the map() function in the form of pairs [key, value] stored 
on a distributed file whose location is given to the master at the end of this step.

ff Reduce: The master node collects the results. It combines the pairs [key, 
value] in the lists of values that share the same key and sorts them for the key 
(lexicographical and increasing or user-defined). The pairs of the form [key, 
IteratorList (value, value, ...)] are passed to the nodes that run the 
reducer function reduce().

Moreover, the output data that is stored on files, can be the input for a new map and reduce 
procedure, allowing, in this way, to concatenate more MapReduce jobs.
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Getting ready

The Disco module is available at https://github.com/
Discoproject/Disco.

You need a Linux/Unix distribution to install it.

The following are the prerequisites (on each server):

ff The SSH daemon and client

ff Erlang/OTP R14A or newer version

ff Python 2.6.6 or newer version, Python 3.2 or newer version

Finally, to install Disco, type the following lines:

git clone git://github.com/Discoproject/Disco.git $Disco_HOME

cd $Disco_HOME

make

cd lib && python setup.py install --user && cd ..

bin/Disco nodaemon

The next step is to enable a password-less login for all servers in the Disco clusters. For a 
single machine installation, you must run the following command:

ssh-keygen -N '' -f ~/.ssh/id_dsa

Then, type the following:

cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys

Now if you try to log in to all servers in the cluster or localhost, you will not need to give a 
password nor answer any questions after the first log in attempt.

For any questions about Disco's installation, refer to http://Disco.
readthedocs.org/en/latest/intro.html.

In the next example, we have used a Python 2.7 distro on a Linux machine.

https://github.com/Discoproject/Disco
https://github.com/Discoproject/Disco
http://Disco.readthedocs.org/en/latest/intro.html
http://Disco.readthedocs.org/en/latest/intro.html
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How to do it…
In the following example, we examine a typical MapReduce problem using the Disco module. 
Given a text, we must count all the occurrences of some words in the text:

from Disco.core import Job, result_iterator

def map(line, params):
    import string
    for word in line.split():
        strippedWord = word.translate\
                       (string.maketrans("",""), string.punctuation)
        yield strippedWord, 1
        
def reduce(iter, params):
    from Disco.util import kvgroup
    for word, counts in kvgroup(sorted(iter)):
        yield word, sum(counts)
        
if __name__ == '__main__':
    job = Job().run(input="There are known knowns.\
                           These are things we know that we know.\
                           There are known unknowns. \
                           That is to say,\
                           there are things that \
                           we know we do not know.\
                           But there are also unknown unknowns.\
                           There are things \
                           we do not know we do not know",
                    map=map,
                    reduce=reduce)

    
    sort_in_numerical_order =\
                            open('SortNumerical.txt', 'w')
    sort_in_alpbabetically_order = \
                                 open('SortAlphabetical.txt', 'w')
    
    wordCount = []
    for word, count in \
        result_iterator(job.wait(show=True)):
        sort_in_alpbabetically_order.write('%s \t %d\n' %
                      (str(word), int(count)) )
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        wordCount.append((word,count))

    sortedWordCount =sorted(wordCount, \
                            key=lambda count: count[1],\
                            reverse=True)
    
    for word, count in sortedWordCount:
        sort_in_numerical_order.write('%s \t %d\n'\
                                      % (str(word), int(count)) )
        
    sort_in_alpbabetically_order.close()
    sort_in_numerical_order.close()

After running the script, we have the two resulting files that we've reported in the following 
table:

Sortnumerical.txt SortAlphabetical.txt
6	 are

6	 know

6	 we

5	 there

3	 do

3	 not

3	 that

3	 things

2	 known

2	 unknowns

1	 also

1	 but

1	 is

1	 knowns

1	 say

1	 to

1	 these

1	 unknown

also		  1

are		  6

but		  1

do		  3

is		  1

know		  6

known		  2

knowns		  1

not		  3

say		  1

to		  1

that		  3

there		  5

these		  1

things		  3

unknown	 1

unknowns	 2

we		  6
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How it works…
The core of this example are the map and reduce functions. The map function Disco has two 
arguments line that represent the sentence to be analyzed. However, params will be ignored 
in this example.

Here, the sentence is split in to one or more words, the punctuation symbols are ignored, and 
all words are converted to lowercase:

def map(line, params):
    import string
    for word in line.split():
        strippedWord = word.translate\
                      (string.maketrans("",""), string.punctuation)
        yield strippedWord, 1

The result of a map function on a line of text is a series of tuples in the form of a key and a 
value. For example, the sentence "There are known knowns" takes on this form:

[("There", 1), ("are", 1), ("known", 1), ("knowns",1)] 

Let's remember that the MapReduce framework manipulates enormous datasets that are 
larger than the common memory space in a single machine, so the keyword yield at the end 
of the map function allows Disco to manage datasets in a smarter way. The reduce function 
operates on two arguments, iter, that are iterable objects (it acts like a list data structure), 
while the params argument linked in the map function is ignored in this example.

Each iterable object is sorted into alphabetical order using the Python function sorted:

def reduce(iter, params):
    from Disco.util import kvgroup
    for word, counts in kvgroup(sorted(iter)):
        yield word, sum(counts)

On the sorted list, we apply Disco's function kvgroup. It groups values of consecutive keys, 
which are compared to be equal. Finally, the occurrence of each word in the text is obtained 
through the Python function sum.

In the main part, we use Disco's job function to execute the mapReduce function:

job = Job().run(input="There are known knowns.\
                           These are things we know that we know.\
                           There are known unknowns. \
                           That is to say,\
                           there are things that \
                           we know we do not know.\
                           But there are also unknown unknowns.\
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                           There are things \
                           we do not know we do not know",
                    map=map,
                    reduce=reduce)

Finally, the results are ordered into numerical and alphabetical order and they are printed in 
two output files:

sort_in_numerical_order = open('SortNumerical.txt', 'w')

sort_in_alpbabetically_order = open('SortAlphabetical.txt', 'w')

There's more…
Disco is a very powerful framework that is rich with different functionalities. A full discussion 
of this module is beyond the scope of this book.

To get a complete introduction, refer to http://Discoproject.org/.

A remote procedure call with RPyC
Remote Python Call (RPyC) is a Python module that is used for remote procedure calls as 
well as for distributed computing. The idea at the base of RPC is to provide a mechanism to 
transfer control from a program (client) to another (server), similar to what happens with the 
invocation of a subroutine in a centralized program. The advantages of this approach are that 
it has very simple semantics and knowledge and familiarity of the centralized mechanism of 
a function call. In a procedure invocation, the client process is suspended until the process 
server has performed the necessary computations and has given the results of computations. 
The effectiveness of this method is due to the fact that the client-server communication takes 
the form of a procedure call instead of invocations to the transport layer so that all the details 
of the operation of the network are hidden from the application program by placing them in 
local procedures called stubs. The main features of RPyC are:

ff In syntactic transparency a remote procedure call can have the same syntax as a 
local call

ff In semantic transparency a remote procedure call is semantically equivalent to the 
local one

ff Handling synchronous and asynchronous communication

http://Discoproject.org/
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ff Symmetric communication protocol means that both the client and server can serve 
a request

Calling Procedure

Resume
Execution

Request Message

Reply Message

Called Procedure

Received procedure
and start procedure
execution

Procedure Execution

Send Reply and wait
for next request

The remote procedure call model

Getting ready
The installation procedure is quite simple with the pip installer. From your command shell, 
type the following:

pip install rpyc

Otherwise, you can go to https://github.com/tomerfiliba/rpyc and download the 
complete package (it is a .zip file). Finally, to install rypc, you must type the command: 
Python setup.py install from the package directory.

After the installation, you can just explore this library. In our examples, we will run a client and 
server on the same machine, localhost. Running a server with rypc is very simple: go to the 
directory ../rpyc-master/bin of the rpyc package directory and then execute the file 
rpyc_classic.py:

C:\ Python CookBook\ Chapter 5- Distributed Python\rpyc-master\bin>python 
rpyc_classic.py

https://github.com/tomerfiliba/rpyc
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After running this script, you'll read on Command Prompt the following output message:

INFO:SLAVE/18812:server started on [0.0.0.0]:18812

How to do it…
We are now ready for the first example that shows you how to redirect stdout of a remote 
process:

import rpyc
import sys
c = rpyc.classic.connect("localhost")
c.execute("print ('hi python cookbook')")   
c.modules.sys.stdout = sys.stdout
c.execute("print ('hi here')")   

By running this script, you'll see the redirected output in the server side:

C:\Python CookBook\Chapter 5- Distributed Python\rpyc-master\bin>python 
rpyc_classic.py

INFO:SLAVE/18812:server started on [0.0.0.0]:18812

INFO:SLAVE/18812:accepted 127.0.0.1:6279

INFO:SLAVE/18812:welcome [127.0.0.1]:6279

hi python cookbook

How it works…
The first step is to run a client that connects to the server:

import rpyc

c = rpyc.classic.connect("localhost")

Here, the client-side statement rpyc.classic.connect (host, port) creates a socket 
connection to the given host and port. Sockets define the endpoint of a connection. rpyc 
uses sockets to communicate with other programs, which may be distributed on different 
computers.

Next, we have the following statement:

c.execute("print ('hi python cookbook')")

This executes the print statement on the server (a remote exec statement).
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6
GPU Programming  

with Python

In this chapter, we will cover the following recipes:

ff Using the PyCUDA module

ff How to build a PyCUDA application

ff Understanding the PyCUDA Memory Model with matrix manipulation

ff Kernel invocations with GPUArray

ff Evaluating element-wise expressions with PyCUDA

ff The MapReduce operation with PyCUDA

ff GPU programming with NumbaPro

ff Using GPU-accelerated libraries with NumbaPro

ff Using the PyOpenCL module

ff How to build a PyOpenCL application

ff Evaluating element-wise expressions with PyOpenCL

ff Testing your GPU application with PyOpenCL
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Introduction
The graphics processing unit (GPU) is an electronic circuit that specializes in processing 
data to render images from polygonal primitives. Although they were designed to carry out 
rendering images, the GPU has continued to evolve, becoming more complex and efficient in 
serving both the real-time and offline rendering community and in performing any scientific 
computations. GPUs are characterized by a highly parallel structure, which allows it to 
manipulate large datasets in an efficient manner. This feature combined with the rapid 
improvement in graphics hardware performance and the extent of programmability caught 
the attention of the scientific world with the possibility of using GPU for purposes other than 
just rendering images. Traditional GPUs are fixed function devices where the whole rendering 
pipeline is built on hardware. This restricts graphics programmers, leading them to use 
different, efficient and high-quality rendering algorithms. Hence, a new GPU was built with 
millions of lightweight parallel cores, which were programmable to render graphics using 
shaders. This is one of the biggest advancements in the field of computer graphics and 
the gaming industry. With lots of programmable cores available, the GPU vendors started 
developing models for parallel programming. Each GPU is indeed composed of several 
processing units called Streaming Multiprocessor (SM) that represent the first logic level of 
parallelism; and each SM infact works simultaneously and independently from the others.
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Each SM is in turn divided into a group of Stream Processors (SP), each of which has a core 
of real execution and can sequentially run a thread. An SP represents the smallest unit of 
an execution logic and represents the level of finer parallelism. The division in SM and SP 
is structural in nature, but it is possible to outline a further logical organization of the SP of 
a GPU, which are grouped together in logical blocks characterized by a particular mode of 
execution. All cores that make up a group run the same instruction at the same time. This 
is just the Single instruction, multiple data (SIMD) model, which we described in the first 
chapter of this book.

Each SM also has a number of registers, which represent an area of ​​ memory for quick 
access that is temporary, local (not shared between the cores), and limited in size. This 
allows storage of frequently used values ​​ from a single core. The general-purpose computing 
on graphics processing units (GP-GPU) is the field devoted to the study of the techniques 
needed to exploit the computing power of the GPU to perform calculations quickly, thanks 
to the high level of parallelism inside. As seen before, GPUs are structured quite differently 
from conventional processors; for this, they have problems of a different nature and require 
specific programming techniques. The most outstanding feature that distinguishes a graphics 
processor is the high number of cores available, which allow us to carry out many threads 
of execution competitors, which are partially synchronized for the execution of the same 
operation. This feature is very useful and efficient in situations where you want to split your 
work in many parts to perform the same operations on different data. On the contrary, it is 
hard to make the best use of this architecture when there is a strong sequential and logical 
order to be respected in the operations to be carried out; otherwise, the work cannot be 
evenly divided into many small subparts. The programming paradigm that characterizes 
the GPU computing is called Stream Processing because the data can be viewed as a 
homogeneous flow of values to which the same operations are applied synchronously.

Currently, the most efficient solutions to exploit the computing power provided by GPU cards 
are the software libraries CUDA and OpenCL. In the following recipes, we will present the 
realization of these software libraries in the Python programming language.

Using the PyCUDA module
PyCUDA is a Python wrap for Compute Unified Device Architecture (CUDA), the software 
library developed by NVIDIA for GPU programming. The CUDA programming model is the 
starting point of understanding how to program the GPU properly with PyCUDA. There are 
concepts that must be understood and assimilated to be able to approach this tool correctly 
and to understand the more specific topics that are covered in the following recipes.
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A hybrid programming model
The programming model "hybrid" of CUDA (and consequently of PyCUDA, which is a Python 
wrapper) is implemented through specific extensions to the standard library of the C language. 
These extensions have been created, whenever possible, syntactically like the function calls in 
the standard C library. This allows a relatively simple approach to a hybrid programming model 
that includes the host and device code. The management of the two logical parts is done by 
the NVCC compiler. Here is a brief description of how this compiler works:

1.	 It separates a device code from a host-code device.

2.	 It invokes a default compiler (for example, GCC) to compile the host code.

3.	 It builds the device code in the binary form (Cubin objects) or in the form assembly 
(code PTX).

4.	 It generates a host key "global" that also includes code PTX.

The compiled CUDA code is converted to a device-specific binary by the driver, during runtime.  
All the previously mentioned steps are executed by PyCUDA at runtime, which makes it a  
Just-in-time (JIT) compiler. The drawback of this approach is the increased load time of  
the application, which is the only way to maintain compatibility "forward", that is, you can 
perform operations on a device that does not exist at the time of the actual compilation.  
A JIT compilation therefore makes an application compatible with future devices that are  
built on architectures with higher computing power, so it is not yet possible to generate  
any binary code.

Edit

Run

Kernel Invocation

Run on GPU

PyCUDA

nvcc .cubin

Upload to GPU

The PyCUDA execution model
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The kernel and thread hierarchy
An important element of a CUDA program is a kernel. It represents the code that is executed 
parallelly on the basis of specifications that will be clarified later with the examples described 
here. Each kernel's execution is done by computing units that are called threads. Unlike 
threads in CPU, GPU threads are lighter in such a way that the change of context is not one 
of the factors to be taken into account in a code performance evaluation because it can be 
considered as instantaneous. To determine the number of threads that must perform a single 
kernel and their logical organization, CUDA defines a two-level hierarchy. In the highest level, 
it defines a so-called grid of blocks. This grid represents a bidimensional structure where the 
thread blocks are distributed, which are three-dimensional.

GRID 1
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Thread 1 Thread 2

Thread 3 Thread 4

Block 2

Thread 1 Thread 2

Thread 3 Thread 4

Block 3

Thread 1 Thread 2

Thread 3 Thread 4

Block 4

Thread 1 Thread 2

Thread 3 Thread 4

The distribution of (3-dimensional) threads in a two-level hierarchy of PyCUDA

Based on this structure, a kernel function must be launched with additional parameters that 
specify precisely the size of the grid and block.

Getting ready
On the Wiki page http://wiki.tiker.net/PyCuda/Installation, the basic 
instructions to install PyCuda on the main operative systems (Linux, Mac, and Windows) are 
explained.

http://wiki.tiker.net/PyCuda/Installation
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With these instructions, you will build a 32-bit PyCUDA library for a Python 2.7 distro:

1.	 The first step is to download and install all the components provided by NVDIA to 
develop with CUDA (refer to https://developer.nvidia.com/cuda-toolkit-
archive) for all the available versions. These components are:

�� The CUDA toolkit is available at http://developer.download.nvidia.
com/compute/cuda/4_2/rel/toolkit/cudatoolkit_4.2.9_
win_32.msi.

�� The NVIDIA GPU Computing SDK is available at http://developer.
download.nvidia.com/compute/cuda/4_2/rel/sdk/
gpucomputingsdk_4.2.9_win_32.exe.

�� The NVIDIA CUDA Development Driver is available at http://developer.
download.nvidia.com/compute/cuda/4_2/rel/drivers/
devdriver_4.2_winvista-win7_32_301.32_general.exe.

2.	 Download and install NumPy (for 32-bit Python 2.7) and Visual Studio C++ 2008 
Express (be sure to set all the system variables).

3.	 Open the file msvc9compiler.py located at /Python27/lib/distutils/. After 
the line 641: ld_args.append ('/IMPLIB:' + implib_file), add the new 
line ld_args.append('/MANIFEST').

4.	 Download PyCUDA from https://pypi.python.org/pypi/pycuda.

5.	 Open Visual Studio 2008 Command Prompt, click on Start, go to All Programs | 
Microsoft Visual Studio 2008 | Visual Studio Tools | Visual Studio Command 
Prompt (2008), and follow the given steps:

1.	 Go in the PyCuda directory.

2.	 Execute python configure.py.

3.	 Edit the created file siteconf.py:

BOOST_INC_DIR = []
BOOST_LIB_DIR = []
BOOST_COMPILER = 'gcc43'
USE_SHIPPED_BOOST = True
BOOST_PYTHON_LIBNAME = ['boost_python']
BOOST_THREAD_LIBNAME = ['boost_thread']
CUDA_TRACE = False
CUDA_ROOT = 'C:\\Program Files\\NVIDIA GPU Computing 
Toolkit\\CUDA\\v4.2'
CUDA_ENABLE_GL = False
CUDA_ENABLE_CURAND = True
CUDADRV_LIB_DIR = ['${CUDA_ROOT}/lib/Win32']
CUDADRV_LIBNAME = ['cuda']

http://developer.download.nvidia.com/compute/cuda/4_2/rel/toolkit/cudatoolkit_4.2.9_win_32.msi
http://developer.download.nvidia.com/compute/cuda/4_2/rel/toolkit/cudatoolkit_4.2.9_win_32.msi
http://developer.download.nvidia.com/compute/cuda/4_2/rel/toolkit/cudatoolkit_4.2.9_win_32.msi
http://developer.download.nvidia.com/compute/cuda/4_2/rel/drivers/devdriver_4.2_winvista-win7_32_301.32_general.exe
http://developer.download.nvidia.com/compute/cuda/4_2/rel/drivers/devdriver_4.2_winvista-win7_32_301.32_general.exe
http://developer.download.nvidia.com/compute/cuda/4_2/rel/drivers/devdriver_4.2_winvista-win7_32_301.32_general.exe
https://pypi.python.org/pypi/pycuda
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CUDART_LIB_DIR = ['${CUDA_ROOT}/lib/Win32']
CUDART_LIBNAME = ['cudart']
CURAND_LIB_DIR = ['${CUDA_ROOT}/lib/Win32']
CURAND_LIBNAME = ['curand']
CXXFLAGS = ['/EHsc']
LDFLAGS = ['/FORCE']

6.	 Finally, install PyCUDA with the following commands in VS2008 Command Prompt:

python setup.py build
python setup.py install

The CUDA toolkit download page

How to do it…
The present example has a dual function. The first is to verify that PyCUDA is properly installed 
and the second is to read and print the characteristics of the GPU cards:

import pycuda.driver as drv 
drv.init() 
print "%d device(s) found." % drv.Device.count() 
for ordinal in range(drv.Device.count()): 
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       dev = drv.Device(ordinal) 
       print "Device #%d: %s" % (ordinal, dev.name()) 
       print " Compute Capability: %d.%d" % dev.compute_capability()     
       print " Total Memory: %s KB" % (dev.total_memory()//(1024)) 

After running the code, we should have an output like this:

C:\ Python CookBook\ Chapter 6 - GPU Programming with Python\Chapter 6 - 
codes>python PyCudaInstallation.py

1 device(s) found.

Device #0: GeForce GT 240

 Compute Capability: 1.2

 Total Memory: 1048576 KB

How it works…
The execution is pretty simple. In the first line of code, pycuda.driver is imported and then 
initialized:

import pycuda.driver as drv 
drv.init()

The pycuda.driver module exposes the driver level to the programming interface of CUDA, 
which is more flexible than the CUDA C "runtime-level" programming interface, and it has a few 
features that are not present at runtime.

Then, it cycles into drv.Device.count(), and for each GPU card found, the name of the 
cards and main characteristics (computing capability and total memory) are printed:

print "Device #%d: %s" % (ordinal, dev.name()) 
print " Compute Capability: %d.%d" % dev.compute_capability()     
print " Total Memory: %s KB" % (dev.total_memory()//(1024)) 

See also
ff PyCUDA is developed by Andreas Klöckner (http://mathema.tician.de/

aboutme/). For any other information concerning PyCUDA, you can refer to  
http://documen.tician.de/pycuda/.

http://mathema.tician.de/aboutme/
http://mathema.tician.de/aboutme/
http://documen.tician.de/pycuda/
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How to build a PyCUDA application
The PyCUDA programming model is designed for the common execution of a program on a 
CPU and GPU, so as to allow you to perform the sequential parts on the CPU and the numeric 
parts, which are more intensive on the GPU. The phases to be performed in the sequential 
mode are implemented and executed on the CPU (host), while the steps to be performed in 
parallel are implemented and executed on the GPU (device). The functions to be performed in 
parallel on the device are called kernels. The steps to execute a generic function kernel on the 
device are as follows:

1.	 The first step is to allocate the memory on the device.

2.	 Then we need to transfer data from the host memory to that allocated on the device.

3.	 Next, we need to run the device:

1.	 Run the configuration.

2.	 Invoke the kernel function.

4.	 Then, we need to transfer the results from the memory on the device to the host 
memory.

5.	 Finally, release the memory allocated on the device.

GPU MEMORYGPU

CPU CPU MEMORY

Transfer
Memory
to CPU

Running Device

Allocate Memory

Transfer
Memory
to GPU

The PyCUDA programming model

How to do it…
To show the PyCUDA workflow, let's consider a 5×5 random array and the following procedure:

1.	 Create the 5×5 array on the CPU.

2.	 Transfer the array to the GPU.

3.	 Perform a task on the array in the GPU (double all the items in the array).

4.	 Transfer the array from the GPU to the CPU.

5.	 Print the results.
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The code for this is as follows:

import pycuda.driver as cuda
import pycuda.autoinit
from pycuda.compiler import SourceModule

import numpy

a = numpy.random.randn(5,5)
a = a.astype(numpy.float32)

a_gpu = cuda.mem_alloc(a.nbytes)
cuda.memcpy_htod(a_gpu, a)

mod = SourceModule("""
  __global__ void doubleMatrix(float *a)
  {
    int idx = threadIdx.x + threadIdx.y*4;
    a[idx] *= 2;
  }
  """)

func = mod.get_function("doubleMatrix")
func(a_gpu, block=(5,5,1))

a_doubled = numpy.empty_like(a)
cuda.memcpy_dtoh(a_doubled, a_gpu)
print ("ORIGINAL MATRIX")
print a
print ("DOUBLED MATRIX AFTER PyCUDA EXECUTION")
print a_doubled

The example output should be like this:

C:\Python CookBook\Chapter 6 - GPU Programming with Python\ >python 
PyCudaWorkflow.py

ORIGINAL MATRIX

[[-0.59975582  1.93627465  0.65337795  0.13205571 -0.46468592]

 [ 0.01441949  1.40946579  0.5343408  -0.46614054 -0.31727529]

 [-0.06868593  1.21149373 -0.6035406  -1.29117763  0.47762445]

 [ 0.36176383 -1.443097    1.21592784 -1.04906416 -1.18935871]

 [-0.06960868 -1.44647694 -1.22041082  1.17092752  0.3686313 ]]
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DOUBLED MATRIX AFTER PyCUDA EXECUTION

[[-1.19951165  3.8725493   1.3067559   0.26411143 -0.92937183]

 [ 0.02883899  2.81893158  1.0686816  -0.93228108 -0.63455057]

 [-0.13737187  2.42298746 -1.2070812  -2.58235526  0.95524889]

 [ 0.72352767 -1.443097    1.21592784 -1.04906416 -1.18935871]

 [-0.06960868 -1.44647694 -1.22041082  1.17092752  0.3686313 ]]

How it works…
The preceding code starts with the following imports:

import pycuda.driver as cuda
import pycuda.autoinit
from pycuda.compiler import SourceModule

The import pycuda.autoinit statement automatically picks a GPU to run based on 
its availability and number. It also creates a GPU context for the subsequent code to run. 
If needed, both the chosen device and the created context are available from pycuda.
autoinit as importable symbols, whereas the SourceModule component is the object 
where a C-like code for the GPU must be written.

The first step is to generate the input 5×5 matrix. Since most GPU computations involve large 
arrays of data, the numpy module must be imported:

import numpy
a = numpy.random.randn(5,5)

Then, the items in the matrix are converted into a single precision mode, many NVIDIA cards 
support only a single precision:

a = a.astype(numpy.float32)

The first operation that needs to be done in order to implement a GPU is to load the input 
array from the host memory (CPU) to the device (GPU). This is done at the beginning of the 
operation and consists of two steps that are performed by invoking the following two functions 
provided PyCUDA:

ff The memory allocation on the device is performed via the function cuda.mem_
alloc. The device and host memory may not ever communicate while performing a 
function kernel. This means that, to run a function parallelly on the device, the data 
related to it must be present in the memory of the device itself. Before you copy data 
from the host memory to the device memory, you must allocate the memory required 
on the device: a_gpu = cuda.mem_alloc(a.nbytes).



GPU Programming with Python

210

ff Copy the matrix from the host memory to that of the device with the following 
function:

call cuda.memcpy_htod : cuda.memcpy_htod(a_gpu, a).

Also note that a_gpu is one-dimensional and on the device, we need to handle it as such. 
All these operations do not require the invocation of a kernel and are made directly by the 
main processor. The SourceModule entity serves to define the (C-like) kernel function 
doubleMatrix that multiplies each array entry by 2:

mod = SourceModule("""
  __global__ void doubleMatrix(float *a)
  {
    int idx = threadIdx.x + threadIdx.y*4;
    a[idx] *= 2;
  }
  """)

The __global__ qualifier directive indicates that the function doubleMatrix will be 
processed on the device. Only the CUDA nvcc compiler will perform this task.

Let's take a look at the function's body:

int idx = threadIdx.x + threadIdx.y*4;

The idx parameter is the matrix index identified by the thread coordinates threadIdx.x 
and threadIdx.y. Then, the element matrix with the index idx is multiplied by 2:

              a[idx] *= 2;

Note that this kernel function will be executed once in 16 different threads. Both the variables 
threadIdx.x and threadIdx.y contain indices between 0 and 3 and the pair is different 
for each thread. Threads scheduling is directly linked to the GPU architecture and its intrinsic 
parallelism. A block of threads is assigned to a single Streaming Multiprocessor (SM), and 
the threads are further divided into groups called warps. The size of a warp depends on the 
architecture under consideration. The threads of the same warp are managed by the control 
unit called the warp scheduler. To take full advantage of the inherent parallelism of SM, 
the threads of the same warp must execute the same instruction. If this condition does not 
occur, we speak of the divergence of threads. If the same warp threads execute different 
instructions, the control unit cannot handle all the warps. It must follow the sequences of 
instructions for every single thread (or for homogeneous subsets of threads) in a serial mode. 
Let's observe how the thread block is divided into various warps, threads are divided by the 
value of threadIdx.

The threadIdx structure consists of three fields: threadIdx.x, threadIdx.y, and 
threadIdx.z.
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T0,0 T1,0 T2,0 T3,0 T4,0

T0,1 T1,1 T2,1 T3,1 T4,1

T0,2 T1,2 T2,2 T3,2 T4,2

T0,3 T1,3 T2,3 T3,3 T4,3

T0,4 T1,4 T2,4 T3,4 T4,4

T0,0 T4,0 T0,1 T4,1 T0,2 T4,2 T0,3 T1,3 T0,4 T4,4

Thread blocks subdivision: T(x,y) where x = threadIdx.x and y = threadIdx.y

We can see that the code in the kernel function will be automatically compiled by the nvcc 
CUDA compiler. If there are no errors, the pointer of this compiled function will be created. In 
fact, mod.get_function("doubleMatrix") returns an identifier to the func function 
that we created:

func = mod.get_function("doubleMatrix ")

To perform a function on the device, you must first configure the execution appropriately. This 
means that you need to determine the size of the coordinates to identify and distinguish the 
thread belonging to different blocks. This will be done using the block parameter inside the 
func call:

func(a_gpu, block = (5, 5, 1))

The block = (5, 5, 1) function tells us that we are calling a kernel function with the a_
gpu linearized input matrix and a single thread block of the size 5 threads in the x direction, 
5 threads in the y direction, and 1 thread in the z direction, 16 threads in total. This structure 
is designed with the parallel implementation of the algorithm in mind. The division of the 
workload results in an early form of parallelism that is sufficient and necessary to make use of 
the computing resources provided by the GPU. Once you've configured the kernel's invocation, 
you can invoke the kernel function that executes instructions parallelly on the device. Each 
thread executes the same code kernel.

After the computation in the GPU device, we use an array to store the results:

a_doubled = numpy.empty_like(a)
cuda.memcpy_dtoh(a_doubled, a_gpu)

This will be printed as follows:

print a
print a_doubled
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There's more…
A warp executes one common instruction at a time. So, to maximize the efficiency of the 
structure all must agree with the same thread's path of execution. When more than one 
thread block is assigned to a multiprocessor to run, they are partitioned into warps that are 
scheduled by a component called the warp scheduler.

Understanding the PyCUDA memory model 
with matrix manipulation

A PyCUDA program, to make the most of available resources, should respect the rules 
dictated by the structure and the internal organization of the SM that imposes constraints on 
the performance of the thread. In particular, the knowledge and correct use of the various 
types of memory that the GPU makes available is fundamental in order to achieve maximum 
efficiency in the programs. In the CUDA-capable GPU card, there are four types of memories, 
which are defined, as follows:

ff Registers: In this, a register is allocated for each thread. This can only access its 
register but not the registers of other threads, even if they belong to the same block.

ff The shared memory: Here, each block has its own shared memory between the 
threads that belong to it. Even this memory is extremely fast.

ff The constant memory: All threads in a grid have constant access to the memory, 
but can be accessed only while reading. The data present in it persists for the entire 
duration of the application.

ff The global memory: All threads of all the grids (so all kernels) have access to the 
global memory. The constant memory data present in it persists for the entire 
duration of the application.

Host
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GLOBAL MEMORY

Thread
(0,0)

Registers

SHARED MEMORY

BLOCK(0,0)

(DEVICE) GRID

Registers
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SHARED MEMORY
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Thread
(1,0)

The GPU memory model
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One of the key points to understand how to make the PyCUDA programs with satisfactory 
performance is that not all memory is the same, but you have to try to make the best of each 
type of memory. The basic idea is to minimize the global memory access via the use of the 
shared memory. The technique is usually used to divide the domain/codomain of the problem 
in such a way so that we enable a block of threads to perform its elaborations in a closed 
subset of data. In this way, the threads adhering to the concerned block will work together to 
load the shared global memory area that is to be processed in the memory, to then proceed to 
exploiting the higher speed of this memory zone.

The basic steps to be performed for each thread will then be as follows:

1.	 Load data from the global memory to the shared memory.

2.	 Synchronize all the threads of the block so that everyone can read safety positions 
shared memory filled by other threads.

3.	 Process the data of the shared memory.

4.	 Make a new synchronization as necessary to ensure that the shared memory has 
been updated with the results.

5.	 Write the results in the global memory.

How to do it…
To better understand this technique, we'll present an example which will clarify this approach. 
This example is based on the product of two matrices. The previous figure shows the product 
of matrices in the standard way and the correspondent sequential code to calculate where 
each element must be loaded from a row and a column of the matrix input:

void SequentialMatrixMultiplication(float*M,float *N,float *P, int 
width)
{
  for (int i=0; i< width; ++i)
      for(int j=0;j < width; ++j) {
          float sum = 0;
          for (int k = 0 ; k < width; ++k) {
              float a = M[I * width + k];
              float b = N[k * width + j];
              sum += a * b;
                     }
         P[I * width + j] = sum;
    }
}
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If each thread was entrusted with the task of calculating an element of the matrix, the 
memory accesses would dominate the execution time of the algorithm. What we can do is rely 
on a block of threads for the task of calculating a submatrix of output so that it is possible to 
reuse the data loaded from the global memory and to collaborate threads in order to minimize 
the memory accesses for each of them.

The following example shows this technique:

import numpy as np
from pycuda import driver, compiler, gpuarray, tools

# -- initialize the device
import pycuda.autoinit

kernel_code_template = """
__global__ void MatrixMulKernel(float *a, float *b, float *c)
{
    int tx = threadIdx.x;
    int ty = threadIdx.y;
    float Pvalue = 0;
    for (int k = 0; k < %(MATRIX_SIZE)s; ++k) {
        float Aelement = a[ty * %(MATRIX_SIZE)s + k];
        float Belement = b[k * %(MATRIX_SIZE)s + tx];
        Pvalue += Aelement * Belement;
    }

    c[ty * %(MATRIX_SIZE)s + tx] = Pvalue;
}
"""
MATRIX_SIZE = 5

a_cpu = np.random.randn(MATRIX_SIZE, MATRIX_SIZE).astype(np.float32)
b_cpu = np.random.randn(MATRIX_SIZE, MATRIX_SIZE).astype(np.float32)
c_cpu = np.dot(a_cpu, b_cpu)
a_gpu = gpuarray.to_gpu(a_cpu) 
b_gpu = gpuarray.to_gpu(b_cpu)

c_gpu = gpuarray.empty((MATRIX_SIZE, MATRIX_SIZE), np.float32)

kernel_code = kernel_code_template % {
    'MATRIX_SIZE': MATRIX_SIZE 
    }
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mod = compiler.SourceModule(kernel_code)

matrixmul = mod.get_function("MatrixMulKernel")

matrixmul(
    a_gpu, b_gpu, 
    c_gpu, 
    block = (MATRIX_SIZE, MATRIX_SIZE, 1),
    )

# print the results
print "-" * 80
print "Matrix A (GPU):"
print a_gpu.get()

print "-" * 80
print "Matrix B (GPU):"
print b_gpu.get()

print "-" * 80
print "Matrix C (GPU):"
print c_gpu.get()

print "-" * 80
print "CPU-GPU difference:"
print c_cpu - c_gpu.get()

np.allclose(c_cpu, c_gpu.get())

The example output will be as follows:

C:\Python CookBook\Chapter 6 - GPU Programming with Python\python 
PyCudaMatrixManipulation.py

-------------------------------------------------------------------------

Matrix A (GPU):

[[ 0.90780383 -0.4782407   0.23222363 -0.63184392  1.05509627]

 [-1.27266967 -1.02834761 -0.15528528 -0.09468858  1.037099  ]

 [-0.18135822 -0.69884419  0.29881889 -1.15969539  1.21021318]

 [ 0.20939326 -0.27155793 -0.57454145  0.1466181   1.84723163]

 [ 1.33780348 -0.42343542 -0.50257754 -0.73388749 -1.883829  ]]

-------------------------------------------------------------------------



GPU Programming with Python

216

Matrix B (GPU):

[[ 0.04523897  0.99969769 -1.04473436  1.28909719  1.10332143]

 [-0.08900332 -1.3893919   0.06948703 -0.25977209 -0.49602833]

 [-0.6463753  -1.4424541  -0.81715286  0.67685211 -0.94934392]

 [ 0.4485206  -0.77086055 -0.16582981  0.08478995  1.26223004]

 [-0.79841441 -0.16199949 -0.35969591 -0.46809086  0.20455229]]

-------------------------------------------------------------------------

Matrix C (GPU):

[[-1.19226956  1.55315971 -1.44614291  0.90420711  0.43665022]

 [-0.73617989  0.28546685  1.02769876 -1.97204924 -0.65403283]

 [-1.62555301  1.05654192 -0.34626681 -0.51481217 -1.35338223]

 [-1.0040834   1.00310731 -0.4568972  -0.90064859  1.47408712]

 [ 1.59797418  3.52156591 -0.21708387  2.31396151  0.85150564]]

-------------------------------------------------------------------------

CPU-GPU difference:

[[  0.00000000e+00   0.00000000e+00   0.00000000e+00  -5.96046448e-08

    0.00000000e+00]

 [  0.00000000e+00   5.96046448e-08   0.00000000e+00   0.00000000e+00

    5.96046448e-08]

 [ -1.19209290e-07   2.38418579e-07   0.00000000e+00  -5.96046448e-08

    0.00000000e+00]

 [  0.00000000e+00   0.00000000e+00  -2.98023224e-08  -5.96046448e-08

    0.00000000e+00]

 [  1.19209290e-07   0.00000000e+00   0.00000000e+00   0.00000000e+00

    0.00000000e+00]]

How it works…
Let's consider the PyCUDA programming workflow. First of all, we must prepare the input 
matrix and the output matrix to store the results:

MATRIX_SIZE = 2
a_cpu = np.random.randn(MATRIX_SIZE, MATRIX_SIZE).astype(np.float32)
b_cpu = np.random.randn(MATRIX_SIZE, MATRIX_SIZE).astype(np.float32)
c_cpu = np.dot(a_cpu, b_cpu)
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Then, we transfer these matrixes in the GPU device with the PyCUDA function gpuarray.
to_gpu():

a_gpu = gpuarray.to_gpu(a_cpu) 
b_gpu = gpuarray.to_gpu(b_cpu)
c_gpu = gpuarray.empty((MATRIX_SIZE, MATRIX_SIZE), np.float32)

The core of the algorithm is the kernel function:

__global__ void MatrixMulKernel(float *a, float *b, float *c)
{
    int tx = threadIdx.x;
    int ty = threadIdx.y;
    float Pvalue = 0;

    for (int k = 0; k < %(MATRIX_SIZE)s; ++k) {
        float Aelement = a[ty * %(MATRIX_SIZE)s + k];
        float Belement = b[k * %(MATRIX_SIZE)s + tx];
        Pvalue += Aelement * Belement;
    }

    c[ty * %(MATRIX_SIZE)s + tx] = Pvalue;
}

Note that the __global__ keyword specifies that this function is a kernel function, and it 
must be called from a host to generate the thread hierarchy on the device.

The threadIdx.x and threadIdy.y are the threads indexes in the grid. We also note 
again that all these threads execute the same kernel code, so different threads will have 
different values with different thread coordinates. In this parallel version, the loop variables i 
and j of the sequential version (refer to the code in the How to do it section) are now replaced 
with threadIdx.x and threadIdx.y. The loop iteration through these indexes is simply 
replaced by these thread indexes, so in the parallel version, we have only one loop iteration. 
When the kernel MatrixMulKernel is invoked, it is executed as a grid of the size 2×2 of 
parallel threads:

mod = compiler.SourceModule(kernel_code)
matrixmul = mod.get_function("MatrixMulKernel")
matrixmul(
    a_gpu, b_gpu, 
    c_gpu, 
    block = (MATRIX_SIZE, MATRIX_SIZE, 1),
    )
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Each CUDA thread grid typically comprises of thousands to millions of lightweight GPU threads 
per kernel invocation. Creating enough threads to fully utilize the hardware often requires 
a large amount of data parallelism; for example, each element of a large array might be 
computed in a separate thread.

Finally, we print out the results to verify that the computation is ok and report the differences 
between the c_cpu and c_gpu matrix products:

print "-" * 80
print "CPU-GPU difference:"
print c_cpu - c_gpu.get()

np.allclose(c_cpu, c_gpu.get())

Kernel invocations with GPUArray
In the previous recipe, we saw how to invoke a kernel function using the class:

pycuda.compiler.SourceModule(kernel_source, nvcc="nvcc", options=None, 
other_options)

It creates a module from the CUDA source code called kernel_source. Then, the NVIDIA 
nvcc compiler is invoked with options to compile the code.

However, PyCUDA introduces the class pycuda.gpuarray.GPUArray that provides a high-
level interface to perform calculations with CUDA:

class pycuda.gpuarray.GPUArray(shape, dtype, *, allocator=None, 
order="C")

This works in a similar way to numpy.ndarray, which stores its data and performs its 
computations on the compute device. The shape and dtype arguments work exactly as in 
NumPy.

All the arithmetic methods in GPUArray support the broadcasting of scalars. The creation of 
gpuarray is quite easy. One way is to create a NumPy array and convert it, as shown in the 
following code:

>>> import pycuda.gpuarray as gpuarray

>>> from numpy.random import randn

>>> from numpy import float32, int32, array

>>> x = randn(5).astype(float32)

>>> x_gpu = gpuarray.to_gpu(x)
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You can print gpuarray as you do normally:

>>> xarray([-0.24655211,  0.00344609,  1.45805557,  0.22002029,  
1.28438667])

>>> x_gpuarray([-0.24655211,  0.00344609,  1.45805557,  0.22002029,  
1.28438667])

How to do it…
The following example represents not only an easy introduction, but also a common use case 
of GPU computations, perhaps in the form of an auxiliary step between other calculations. The 
script for this is as follows:

import pycuda.gpuarray as gpuarray
import pycuda.driver as cuda
import pycuda.autoinit
import numpy

a_gpu = gpuarray.to_gpu(numpy.random.randn(4,4).astype(numpy.float32))
a_doubled = (2*a_gpu).get()
print a_doubled
print a_gpu

The output is (running the function from Python IDLE) as follows:

C \Python Parallel Programming INDEX\Chapter 6 - GPU Programming wit
h Python\python PyCudaGPUArray.py
ORIGINAL MATRIX
[[-0.60254627  1.16694951  1.48510635 -1.46718287  2.11878467]
 [ 2.63159704 -3.6541729   2.44197178 -1.12101364  0.22178674]
 [-0.87713826 -1.9803952   0.98741448 -2.83859134 -1.55612338]
 [ 0.79552311 -0.25934356 -1.12207913 -0.21778747 -4.0459609 ]
 [-1.74858582  1.34928024 -2.55908132  2.22259712  0.82242775]]

DOUBLED MATRIX AFTER PyCUDA EXECUTION USING GPUARRAY CALL
[[-0.30127314  0.58347476  0.74255317 -0.73359144  1.05939233]
 [ 1.31579852 -1.82708645  1.22098589 -0.56050682  0.11089337]
 [-0.43856913 -0.9901976   0.49370724 -1.41929567 -0.77806169]
 [ 0.39776155 -0.12967178 -0.56103957 -0.10889374 -2.02298045]
 [-0.87429291  0.67464012 -1.27954066  1.11129856  0.41121387]]
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How it works…
Of course, we have to import all the required modules:

import pycuda.gpuarray as gpuarray
import pycuda.driver as cuda
import pycuda.autoinit
import numpy

The a_gpu input matrix contains all the items that are generated randomly. To perform the 
computation in the GPU, (double all the items in the matrix) we have only one statement:

a_doubled = (2*a_gpu).get()

The result is put in the a_doubled matrix (using the get() method). Finally, the result is 
printed as follows:

print a_doubled

There's more…
The pycuda.gpuarray.GPUArray supports all arithmetic operators and a number 
of methods and functions, all patterned after the corresponding functionality in NumPy. 
In addition to this, many special functions are available in pycuda.cumath. The arrays 
of approximately uniformly distributed random numbers may be generated using the 
functionality in pycuda.curandom.

Evaluating element-wise expressions with 
PyCUDA

The PyCuda.elementwise.ElementwiseKernel function allows us to execute the kernel 
on complex expressions that are made of one or more operands into a single computational 
step, which is as follows:

ElementwiseKernel(arguments,operation,name,optional_parameters)

Here, we note that:

ff arguments: This is a C argument list of all the parameters that are involved in the 
kernel's execution.

ff operation: This is the operation that is to be executed on the specified arguments. 
If the argument is a vector, each operation will be performed for each entry.

ff name: This is the kernel's name.

ff optional_parameters: These are the compilation directives that are not used in 
the following example.
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How to do it…
In this example, we'll show you the typical use of the ElementwiseKernel call. We have two 
vectors of 50 elements, input_vector_a and input_vector_b, that are built in a random 
way. The task here is to evaluate their linear combination.

The code for this is as follows:

import pycuda.autoinit
import numpy
from pycuda.curandom import rand as curand
from pycuda.elementwise import ElementwiseKernel
import numpy.linalg as la

input_vector_a = curand((50,))
input_vector_b = curand((50,))
mult_coefficient_a = 2
mult_coefficient_b = 5

linear_combination = ElementwiseKernel(
        "float a, float *x, float b, float *y, float *c",
        "c[i] = a*x[i] + b*y[i]",
        "linear_combination")

linear_combination_result = gpuarray.empty_like(input_vector_a)
linear_combination(mult_coefficient_a, input_vector_a,\
                   mult_coefficient_b, input_vector_b,\
                   linear_combination_result)

print ("INPUT VECTOR A =")
print (input_vector_a)

print ("INPUT VECTOR B = ")
print (input_vector_b)

print ("RESULTING VECTOR C = ")
print linear_combination_result

print ("CHECKING THE RESULT EVALUATING THE DIFFERENCE VECTOR BETWEEN C 
AND THE LINEAR COMBINATION OF A AND B")
print ("C - (%sA + %sB) = "%(mult_coefficient_a,mult_coefficient_b))
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print (linear_combination_result - (mult_coefficient_a*input_vector_a\
                                    + mult_coefficient_b*input_
vector_b))
assert la.norm((linear_combination_result - \
                (mult_coefficient_a*input_vector_a +\
                 mult_coefficient_b*input_vector_b)).get()) < 1e-5

The output for this from Command Prompt is as follows:

C:\Python CookBook\Chapter 6 - GPU Programming with Python\ >python 
PyCudaElementWise.py
INPUT VECTOR A =
[ 0.73191601  0.7004351   0.87159222  0.49621502  0.19640177  
0.75579387
  0.35208538  0.97497243  0.36948711  0.34328628  0.06811771  
0.04270195
  0.15690483  0.39899695  0.2927697   0.36201504  0.09503061  
0.45646626
  0.35608584  0.01598917  0.75943208  0.49343511  0.79146844  
0.33111155
  0.18454118  0.83971804  0.01466237  0.77959627  0.54659295  
0.4575595
  0.55539894  0.23285247  0.14676388  0.72028935  0.87861985  
0.13928016
  0.18071586  0.8029055   0.05551658  0.49400434  0.40941685  
0.55373788
  0.07541087  0.55443048  0.19723719  0.72457349  0.46491891  
0.65380263
  0.93845034  0.27472526]
INPUT VECTOR B =
[ 0.29464501  0.21645674  0.93407696  0.48678038  0.71135205  
0.0588627
  0.99216938  0.879906    0.07517455  0.84360296  0.57358545  
0.73907417
  0.06841258  0.1816148   0.53327322  0.30980903  0.96774238  
0.90884209
  0.39139062  0.97678316  0.41284555  0.17893282  0.47421032  
0.13706622
  0.62038481  0.22524452  0.67131585  0.06617502  0.02492006  
0.99894243
  0.28288943  0.55505407  0.14323047  0.54854101  0.2742492   
0.01146096
  0.45902726  0.03561942  0.78358203  0.32014725  0.13187674  
0.42909116
  0.2633251   0.07679776  0.80823648  0.57373965  0.40740359  
0.26024994
  0.61452144  0.46388686]
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RESULTING VECTOR C =
[ 2.93705702  2.48315382  6.41356945  3.42633176  3.94956398  
1.80590129
  5.6650176   6.34947491  1.11484694  4.90458727  3.00416279  
3.78077483
  0.65587258  1.70606792  3.25190544  2.2730751   5.02877283  
5.45714283
  2.6691246   4.91589403  3.58309197  1.88153434  3.95398855  
1.34755421
  3.47100639  2.80565882  3.38590407  1.89006758  1.21778619  
5.90983152
  2.52524495  3.24097538  1.00968003  4.18328381  3.12848568  
0.33586511
  2.65656805  1.78390813  4.02894306  2.58874488  1.47821736  
3.25293159
  1.46744728  1.49284983  4.43565702  4.31784534  2.96685553  
2.60885501
  4.94950771  2.86888456]
CHECKING THE RESULT EVALUATING THE DIFFERENCE VECTOR BETWEEN C AND THE 
LINEAR COMBINATION OF A AND B
C - (2A + 5B) =
[ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  
0.
  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  
0.
  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.]

How it works…
After the usual import, we note:

from pycuda.elementwise import ElementwiseKernel

We must build all the elements that are to be manipulated. Let's remember that the task to 
be done is to evaluate a linear combination of two vectors input_vector_a and input_
vector_b. These two vectors are initialized using the PyCUDA curandom library, which is 
used for the generation of pseudorandom numbers:

To import the library, use the following code:

from pycuda.curandom import rand as curand

To define the random vector (50 elements), use:

input_vector_a = curand((50,))
input_vector_b = curand((50,))
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We defined the two coefficients of multiplication that are to be used in the calculation of the 
linear combination of these two vectors:

mult_coefficient_a = 2
mult_coefficient_b = 5

The core example is the kernel invocation for which we use the PyCUDA 
ElementwiseKernel construct, shown as follows:

linear_combination = ElementwiseKernel(
        "float a, float *x, float b, float *y, float *c",
        "c[i] = a*x[i] + b*y[i]",
        "linear_combination")

The first line of the argument list (in a C-style definition) defines all the parameters to be 
inserted for the calculation:

        "float a, float *x, float b, float *y, float *c",

The second line defines how to manipulate the arguments list. For each value of the index i,  
a sum of these components must be evaluated:

  "c[i] = a*x[i] + b*y[i]",

The last line gives the linear_combination name to ElementwiseKernel.

After the kernel, the resulting vector is defined. It is an empty vector of the same dimension  
as of the input vector:

linear_combination_result = gpuarray.empty_like(input_vector_a)
Finally evaluate the kernel:
linear_combination(mult_coefficient_a, input_vector_a,\
                   mult_coefficient_b, input_vector_b,\
                   linear_combination_result)

You can check the results using the following code:

assert la.norm((linear_combination_result - \
                (mult_coefficient_a*input_vector_a +\
                 mult_coefficient_b*input_vector_b)).get()) < 1e-5

The assert function tests the result and triggers an error if the condition is false.

There's more…
In addition to the curand library, derived from the CUDA library, PyCUDA provides other math 
libraries, so you can take a look at the libraries listed at http://documen.tician.de/
pycuda.

http://documen.tician.de/pycuda
http://documen.tician.de/pycuda
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The MapReduce operation with PyCUDA
PyCUDA provides a functionality to perform reduction operations on the GPU. This is possible 
with the pycuda.reduction.ReductionKernel method:

ReductionKernel(dtype_out, arguments, map_expr ,reduce_expr, 
                name,optional_parameters)  

Here, we note that:

ff dtype_out: This is the output's data type. It must be specified by the numpy.dtype 
data type.

ff arguments: This is a C argument list of all the parameters involved in the reduction's 
operation.

ff map_expr: This is a string that represents the mapping operation. Each vector in this 
expression must be referenced with the variable i.

ff reduce_expr: This is a string that represents the reduction operation. The operands 
in this expression are indicated by lowercase letters, such as a, b, c, ..., z.

ff name: This is the name associated with ReductionKernel, with which the kernel is 
compiled.

ff optional_parameters: These are not important in this recipe as they are the 
compiler's directives.

The method executes a kernel on vector arguments (at least one), performs map_expr on 
each entry of the vector argument, and then performs reduce_expr on its outcome.

How to do it…
This example shows the implementation of a dot product of two vectors (500 elements) through 
an instantiation of the ReductionKernel class. The dot product, or scalar product, is an 
algebraic operation that takes two equal length sequences of numbers (usually coordinate 
vectors) and returns a single number that is the sum of the products of the corresponding 
entries of the two sequences of numbers. This is a typical MapReduce operation, where the Map 
operation is an index-by-index product and the reduction operation is the sum of all the products.

The PyCUDA code for this task is very short:

import pycuda.gpuarray as gpuarray
import pycuda.autoinit
import numpy
from pycuda.reduction import ReductionKernel

vector_length = 400
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input_vector_a = gpuarray.arange(vector_length, dtype=numpy.int)
input_vector_b = gpuarray.arange(vector_length, dtype=numpy.int)
dot_product = ReductionKernel(numpy.int,
                       arguments="int *x, int *y",
                       map_expr="x[i]*y[i]",
                       reduce_expr="a+b", neutral="0")

dot_product = dot_product (input_vector_a, input_vector_b).get()

print("INPUT VECTOR A")
print input_vector_a

print("INPUT VECTOR B")
print input_vector_b

print("RESULT DOT PRODUCT OF A * B")
print dot_product 

Running the code from Command Prompt, you will have an output like this:

C:\Python CookBook\Chapter 6 - GPU Programming with Python\>python 
PyCudaReductionKernel.py

INPUT VECTOR A

[  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17

  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35

  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53

  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71

  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89

  90  91  92  93  94  95  96  97  98  99 100 101 102 103 104 105 106 107

 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125

 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161

 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179

 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197

 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215

 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233

 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251

 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
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 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287

 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305

 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323

 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341

 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359

 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377

 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395

 396 397 398 399]

INPUT VECTOR B

[  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17

  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35

  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53

  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71

  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89

  90  91  92  93  94  95  96  97  98  99 100 101 102 103 104 105 106 107

 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125

 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161

 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179

 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197

 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215

 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233

 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251

 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269

 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287

 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305

 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323

 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341

 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359

 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377

 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395

 396 397 398 399]

RESULT DOT PRODUCT OF A * B

21253400
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How it works…
In this script, the input vectors input_vector_a and input_vector_b are integer 
vectors. Each of them, as you can see from the preceding output result, ranges from 0 to 399 
elements (400 elements in total):

vector_length = 400

input_vector_a = gpuarray.arange(vector_length, dtype=numpy.int)
input_vector_b = gpuarray.arange(vector_length, dtype=numpy.int)

After the definition of the inputs, we can define the MapReduce operation by calling the 
ReductionKernel PyCUDA function:

dot_product = ReductionKernel(numpy.int,
                       arguments="int *x, int *y",
                       map_expr="x[i]*y[i]",
                       reduce_expr="a+b", neutral="0")

This kernel operation is defined as follows:

ff The first entry in the argument list tells us that the output will be an integer

ff The second entry defines the data types for the inputs (array of integers) in a C-like 
notation

ff The third entry is the map operation, which is the product of the ith element of the 
two vectors

ff The fourth operation is the reduction operation, which is the sum of all the products

Observe that the end result of calling the ReductionKernel instance is a GPUArray scalar 
that still resides in the GPU. It can be brought to the CPU by a call to its get method or can be 
used in place of the GPU.

Then, the kernel function is invocated, as shown:

dot_product = dot_product (input_vector_a, input_vector_b).get()

The input vectors and the resulting dot product are printed out:

print input_vector_a
print input_vector_b
print dot_product 
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GPU programming with NumbaPro
NumbaPro is a Python compiler that provides a CUDA-based API to write CUDA programs. 
It is designed for array-oriented computing tasks, much like the widely used NumPy library. 
The data parallelism in array-oriented computing tasks is a natural fit for accelerators such 
as GPUs. NumbaPro understands NumPy array types and uses them to generate efficient 
compiled code for execution on GPUs or multicore CPUs.

The compiler works by allowing you to specify type signatures for Python functions, which 
enable compilation at runtime (called the JIT compilation).

The most important decorators are:

ff numbapro.jit: This allows a developer to write CUDA-like functions. When 
encountered, the compiler translates the code under the decorator into the pseudo 
assembly PTX language to be executed in the GPU.

ff numbapro.autojit: This annotates a function for a deferred compilation 
procedure. This means that each function with this signature is compiled exactly 
once.

ff numbapro.vectorize: This creates a so-called ufunc object (the Numpy universal 
function) that takes a function and executes it parallelly in vector arguments.

ff guvectorize: This creates a so-called gufunc object (the NumPy generalized 
universal function). A gufunc object may operate on entire subarrays (refer to 
http://docs.continuum.io/numbapro/generalizedufuncs.html for more 
references.)

All these decorators have a compiler directive called a target that selects the code generation 
target. The NumbaPro compiler supports the parallel and GPU targets. The parallel target is 
available to vectorize the operations, while the GPU directive offloads the computation to a 
NVIDIA CUDA GPU.

Getting ready
NumbaPro is part of Anaconda Accelerate, which is a commercially licensed product 
(NumbaPro is also available under a free license for academic users) from Continuum 
Analytics. It is built on top of the BSD-licensed, open source Numba project, which itself relies 
heavily on the capabilities of the LLVM compiler. The GPU backend of NumbaPro utilizes the 
LLVM-based NVIDIA Compiler SDK.
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To get started with NumbaPro, the first step is to download and install the Anaconda Python 
distribution (http://continuum.io/downloads), which is a completely free, enterprise-
ready Python distribution for large-scale data processing, predictive analytics, and scientific 
computing. It includes many popular packages (Numpy, Scipy, Matplotlib, iPython, and so on) 
and conda, which is a powerful package manager.

Once you have Anaconda installed, you must type the following instructions from Anaconda's 
Command Prompt:

> conda update conda

> conda install accelerate

> conda install numbapro

NumbaPro does not ship the CUDA driver. It is the user's responsibility to ensure that their 
systems are using the latest drivers. After the installation, it's possible to perform the detection 
of the CUDA library and GPU, so let's open Python from the Anaconda console and type:

import numbapro
numbapro.check_cuda()

The output of these two lines of code should be as follows (we used a 64-bit Anaconda distro):

C:\Users\Giancarlo\Anaconda>python

Python 2.7.10 |Anaconda 2.3.0 (64-bit)| (default, May 28 2015, 16:44:52) 
[MSC v.1500 64 bit (AMD64)] on win32

Type "help", "copyright", "credits" or "license" for more information.

Anaconda is brought to you by Continuum Analytics.

Please check out: http://continuum.io/thanks and https://binstar.org

>>> import numbapro

Vendor:  Continuum Analytics, Inc.

Package: mkl

Message: trial mode expires in 30 days

Vendor:  Continuum Analytics, Inc.

Package: mkl

Message: trial mode expires in 30 days

Vendor:  Continuum Analytics, Inc.

Package: numbapro

Message: trial mode expires in 30 days

>>> numbapro.check_cuda()

------------------------------libraries detection------------------------

http://continuum.io/downloads


Chapter 6

231

Finding cublas

        located at C:\Users\Giancarlo\Anaconda\DLLs\cublas64_60.dll

        trying to open library...       ok

Finding cusparse

        located at C:\Users\Giancarlo\Anaconda\DLLs\cusparse64_60.dll

        trying to open library...       ok

Finding cufft

        located at C:\Users\Giancarlo\Anaconda\DLLs\cufft64_60.dll

        trying to open library...       ok

Finding curand

        located at C:\Users\Giancarlo\Anaconda\DLLs\curand64_60.dll

        trying to open library...       ok

Finding nvvm

        located at C:\Users\Giancarlo\Anaconda\DLLs\nvvm64_20_0.dll

        trying to open library...       ok

        finding libdevice for compute_20...     ok

        finding libdevice for compute_30...     ok

        finding libdevice for compute_35...     ok

-------------------------------hardware detection------------------------

Found 1 CUDA devices

id 0            GeForce 840M                              [SUPPORTED]

                      compute capability: 5.0

                           pci device id: 0

                              pci bus id: 8

Summary:

        1/1 devices are supported

PASSED

True

>>>
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How to do it…
In this example, we give a demonstration of the NumbaPro compiler using the annotation 
@guvectorize. In the following task, we try to execute a matrix multiplication using the 
Numbapro module:

from numbapro import guvectorize
import numpy as np

@guvectorize(['void(int64[:,:], int64[:,:], int64[:,:])'],
             '(m,n),(n,p)->(m,p)')
def matmul(A, B, C):
    m, n = A.shape
    n, p = B.shape
    for i in range(m):
        for j in range(p):
            C[i, j] = 0
            for k in range(n):
                C[i, j] += A[i, k] * B[k, j]

dim = 10
A = np.random.randint(dim,size=(dim, dim))
B = np.random.randint(dim,size=(dim, dim))

C = matmul(A, B)
print("INPUT MATRIX A")
print(":\n%s" % A)
print("INPUT MATRIX B")
print(":\n%s" % B)
print("RESULT MATRIX C = A*B")
print(":\n%s" % C)

After running the code (using the Anaconda console), we should have an output like this:

INPUT MATRIX A
:
[[7 7 8 5 8 5 1 9 5 9]
 [3 5 5 4 6 7 6 5 3 1]
 [7 1 6 8 7 9 0 3 3 3]
 [7 4 4 3 7 8 1 2 1 2]
 [4 7 7 1 3 5 5 6 7 6]
 [5 0 1 5 8 4 4 4 4 9]
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 [1 3 2 0 7 3 7 2 3 4]
 [0 2 9 0 7 5 9 7 4 7]
 [7 3 7 6 5 6 4 2 2 7]
 [2 1 9 7 1 0 3 5 7 3]]
INPUT MATRIX B
:
[[2 9 8 4 2 3 9 7 3 1]
 [9 1 3 3 8 0 7 6 3 5]
 [7 4 9 6 6 5 9 7 6 6]
 [6 8 3 1 5 4 4 7 7 5]
 [6 2 5 1 2 8 6 0 5 8]
 [4 4 5 7 6 0 1 1 3 8]
 [2 7 8 6 1 9 8 4 1 6]
 [2 2 9 8 3 6 1 4 7 4]
 [9 9 6 9 3 3 3 2 4 9]
 [8 4 6 7 8 8 8 6 7 8]]

RESULT MATRIX C = A*B
:
[[368 284 402 331 304 295 361 291 327 378]
 [231 207 278 226 188 199 236 177 193 273]
 [248 247 280 217 208 190 243 198 232 279]
 [201 181 232 175 173 149 218 156 170 225]
 [297 239 331 301 239 225 290 225 229 315]
 [235 229 270 222 181 248 246 175 219 280]
 [174 142 201 166 124 185 192 108 129 217]
 [267 213 348 297 212 292 289 194 233 334]
 [266 254 305 239 228 230 303 234 232 288]
 [227 219 255 215 166 189 214 196 204 229]]

How it works…
The @guvectorize annotation works on array arguments. This decorator takes an extra 
argument to specify the gufunc signature. The arguments are explained, as follows:

ff The first three arguments specify the types of data to be managed, which are the 
array of integers: 'void(int64[:,:], int64[:,:], int64[:,:])'

ff The last argument of @guvectorize specifies how to manipulate the matrix 
dimensions: '(m,n),(n,p)->(m,p)'

      @guvectorize(['void(int64[:,:], int64[:,:], int64[:,:])'],
             '(m,n),(n,p)->(m,p)')
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In the subsequent code, we define the matmul(A, B, C) operation. It accepts the two input 
matrix A and B and produces a C output matrix. According to the gufunc signature, we should 
have:

A(m,n)* B(n,p) = C(m,p) where m,n,p are the matrix dimensions.

The matrix product is simply performed via three for loops along with the matrix indices:

       for i in range(m):
              for j in range(p):
                 C[i, j] = 0
                  for k in range(n):
                      C[i, j] += A[i, k] * B[k, j]

The Numpy's function randint is used to build integers from random matrices:

dim = 10
A = np.random.randint(dim,size=(dim, dim))
B = np.random.randint(dim,size=(dim, dim))

Finally, the matmul function is called with these matrices with arguments, and the resultant 
matrix is printed out:

   C = matmul(A, B)
   print("RESULT MATRIX C = A*B")
        print(":\n%s" % C)

Using GPU-accelerated libraries with 
NumbaPro

NumbaPro provides a Python wrap for CUDA libraries for numerical computing. Each code 
using these libraries will get a significant speedup without writing any GPU-specific code. The 
libraries are explained as follows:

ff cuBLAS: This is a library developed by NVIDIA that provides the main functions of 
linear algebra to run on a GPU. Like the Basic Linear Algebra Subprograms (BLAS) 
library that implements the functions of linear algebra on the CPU, the cuBLAS library 
classifies its functions into three levels:

�� Level 1: Vector operations

�� Level 2: Transactions between a matrix and vector

�� Level 3: Operations between matrices
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The division of these functions in the three levels is based on the number of nested 
loops that are needed to perform the selected operation. More precisely, the 
operations of the level are essential cycles that are geared to complete the execution 
of the selected function.

ff cuFFT: This provides a simple interface to calculate the Fast Fourier Transform (FFT) 
in a distributed manner on an NVIDIA GPU, enabling you to exploit the parallelism of 
the GPU without having to develop your own implementation of the FFT.

ff cuRAND: This library provides the creation of quasirandom numbers. A quasirandom 
number is a random number generated by a deterministic algorithm.

ff cuSPArse: This provides a set of functions for the management of sparse matrices. 
Unlike the previous case, its functions are classified into four levels:

�� Level 1: These are operations between a vector that is stored in a shed and 
a vector that is stored in a dense format.

�� Level 2: These are the transactions between a matrix format stored in a shed 
and a vector stored in the dense format.

�� Level 3: These are the operations in a matrix format that are stored in a 
shed and set of vectors that are stored in a dense format (this set can be 
considered as one large dense matrix.)

�� Conversion: These are operations that allow the conversion between 
different storage formats.

How to do it…
In this example, we present an implementation of GEneral Matrix Multiply (GEMM), which is 
a routine to perform matrix-matrix multiplication on NVIDIA GPUs. The sequential version using 
the NumPy Python module and the parallel version using the cuBLAS library will be reported. 
Also, a comparison of the execution time will be made between the two algorithms.

The code for this is as follows:

import numbapro.cudalib.cublas as cublas
import numpy as np
from timeit import default_timer as timer

dim = 10
     
def gemm():
    print("Version 2".center(80, '='))
     
    A = np.random.rand(dim,dim)
    B = np.random.rand(dim, dim)
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    D = np.zeros_like(A, order='F')
    
    print("MATRIX A :")
    print A
    print("VECTOR B :")
    print B

    # NumPy
    start = timer()
    E = np.dot(A, B) 
    numpy_time = timer() - start
    print("Numpy took %f seconds" % numpy_time)
    
    # cuBLAS
    blas = cublas.Blas()
    
    start = timer()
    blas.gemm('T', 'T', dim, dim, dim, 1.0, A, B, 1.0, D)
    cuda_time = timer() - start
    print ("RESULT MATRIX EVALUATED WITH CUBLAS")
    print D
    print("CUBLAS took %f seconds" % cuda_time)
    diff = np.abs(D - E)
    print("Maximum error %f" % np.max(diff))

def main():
   
    gemm()

if __name__ == '__main__':
   main()

The output obtained for this will be as follows:

MATRIX A :

[[ 0.79582178  0.95671563  0.69251157  0.85600979  0.32826726  0.72861569

   0.20724061  0.55065641  0.2257875   0.90146437]

 [ 0.6742022   0.43449657  0.04862685  0.9023226   0.87598306  0.20774405

   0.15774015  0.2847742   0.81601615  0.34114773]

 [ 0.61500219  0.65982283  0.73493152  0.21913261  0.80862566  0.73982082

   0.84005388  0.38745489  0.676947    0.31530397]
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 [ 0.60694411  0.65138528  0.63773284  0.06589098  0.49177294  0.02029247

   0.9064746   0.93419845  0.14609622  0.28317855]

 [ 0.60166404  0.41423776  0.09938464  0.19315303  0.07374789  0.45335697

   0.2912572   0.81481984  0.65222424  0.0670377 ]

 [ 0.32192297  0.30244072  0.86595209  0.37701833  0.79095644  0.11518194

   0.88491826  0.98290063  0.62965353  0.38323725]

 [ 0.21512101  0.64731098  0.4079146   0.8371392   0.01398673  0.85945652

   0.0586854   0.48812094  0.3625991   0.58142603]

 [ 0.77378663  0.43994483  0.5620805   0.70350504  0.60589009  0.09605428

   0.25423268  0.06869655  0.13642323  0.00221422]

 [ 0.77808301  0.47386303  0.54323866  0.42010733  0.80652762  0.05903843

   0.63316824  0.58479485  0.45141828  0.46231481]

 [ 0.97122802  0.53723365  0.68688748  0.54315409  0.00883411  0.9855186

   0.53542786  0.83478941  0.27459888  0.21024639]]

VECTOR B :

[[ 0.17084153  0.44546677  0.21551063  0.39731923  0.00102686  0.81069924

   0.00681474  0.01126972  0.13769525  0.63437229]

 [ 0.81913609  0.97583768  0.52579565  0.20179695  0.24066758  0.18154282

   0.75033104  0.41878918  0.96892428  0.54358419]

 [ 0.10071768  0.3090773   0.94185921  0.70550442  0.10651627  0.62659408

   0.23255164  0.96166165  0.65615938  0.16991118]

 [ 0.84163163  0.59296382  0.12281989  0.32851275  0.78716318  0.02568872

   0.02367708  0.65485736  0.79834789  0.76747705]

 [ 0.90406949  0.03424157  0.01519989  0.5011444   0.63175281  0.17705116

   0.16257016  0.81357471  0.58567631  0.24503327]

 [ 0.62989968  0.47944669  0.86860435  0.94086568  0.24312278  0.13450463

   0.16352136  0.42323191  0.46907905  0.97772097]

 [ 0.44608094  0.19969488  0.01035155  0.69528549  0.07219375  0.91454669

   0.18330497  0.76095336  0.12880003  0.24301603]

 [ 0.37860881  0.33079438  0.19275564  0.58316669  0.35753971  0.63697732

   0.72063491  0.42698316  0.53811423  0.83682958]

 [ 0.42135462  0.89413827  0.00620849  0.63770542  0.29376823  0.68415057

   0.71826696  0.9748898   0.9086774   0.7084634 ]

 [ 0.08020851  0.47789158  0.45538401  0.26468263  0.84960276  0.1108932

   0.0407631   0.41811299  0.2539022   0.73346706]]
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Numpy took 1.167435 seconds

RESULT MATRIX EVALUATED WITH CUBLAS

[[ 2.93393517  3.22653293  2.58999843  2.97688025  2.40723642  2.22561846

   1.71083261  3.20145366  3.4654546   3.9246803 ]

 [ 2.70759988  2.42236864  0.94108333  2.20715685  2.06739391  1.78390442

   1.37381915  2.80760808  2.87826551  2.88739456]

 [ 2.93301949  2.70921232  2.08465713  3.39447429  1.76684939  2.84034554

   1.8600905   3.70096673  3.21368161  3.20257798]

 [ 2.05665894  1.92477247  1.42646422  2.45288009  1.27576149  2.65682509

   1.68187918  2.6942483   2.30742661  2.35163885]

 [ 1.68553937  1.98030198  1.05436088  2.03107385  0.98066787  1.94328559

   1.54050405  1.8876191   2.04514196  2.49719893]

 [ 2.55782414  2.2600454   1.57942935  3.11991574  1.91570669  2.93236718

   1.92525406  3.76932667  3.03618471  2.87628333]

 [ 2.27705425  2.53777179  1.98218876  2.30511984  1.85547257  1.36423334

   1.39131705  2.43879465  2.75148098  3.14994564]

 [ 1.94662205  1.62822264  1.12425671  1.72230283  1.21131853  1.56748417

   0.79113948  2.08449619  2.05742732  1.82536594]

 [ 2.42686338  2.22641127  1.3762425   2.57727754  1.80747335  2.53040609

   1.51847658  3.05078902  2.68199133  2.72340269]

 [ 2.44854528  2.69315101  2.3255071   3.17886105  1.47260987  2.69597578

   1.65043895  2.79595207  2.82714486  3.58489296]]

CUBLAS took 0.004226 seconds

Maximum error 0.000000

The result obtained confirms the effectiveness of the cuBLAS library.

How it works…
In order to make a comparison between a NumPy and cuBLAS implementation of a matrix 
product, we import all the required libraries:

import numbapro.cudalib.cublas as cublas
import numpy as np

Also, we define the matrix dimension:

dim = 10
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The core algorithm is the gemm() function. First, we define the input matrices:

A = np.random.rand(dim,dim)
B = np.random.rand(dim,dim)

Here, D will contain the output of the cuBLAS implementation:

   D = np.zeros_like(A, order='F')

In this example, we compare the calculation done with NumPy and cuBLAS. The NumPy 
evaluation is: E = np.dot(A,B), where the matrix E will contain the dot product.

Finally, the cuBLAS implementation is as follows:

 blas = cublas.Blas()
    start = timer()
    blas.gemm('T', 'T', dim, dim, dim, 1.0, A, B, 1.0, D)
    cuda_time = timer() - start

The gemm() function is a cuBLAS level 3 function:

numbapro.cudalib.cublas.Blas.gemm(transa, transb, m, n, k, alpha, 
                                  A, B,beta, C)  

It realizes a matrix-matrix multiplication in the following form:

C = alpha * op(A) * op(B) + beta * C where op is transpose or not.

At the end of the function, we compare the two results and report the execution time (cuda_
time):

   print("CUBLAS took %f seconds" % cuda_time)
       diff = np.abs(D - E)
       print("Maximum error %f" % np.max(diff))

There's more…
In this example, we saw an application of the cuBLAS library. For more complete references, 
refer to http://docs.nvidia.com/cuda/cublas/index.html and http://docs.
continuum.io/numbapro/cudalib for a complete list of CUDA function libraries wrapped 
with NumbaPro.

http://docs.continuum.io/numbapro/cudalib
http://docs.continuum.io/numbapro/cudalib
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Using the PyOpenCL module
Open Computing Language (OpenCL) is a framework used to develop programs that work 
across heterogeneous platforms, which can be made either by the CPU or GPU that are 
produced by different manufacturers. This platform was created by Apple, but has been 
developed and maintained by a non-profit consortium called the Khronos Group. This 
framework is the main alternative for the CUDA execution of software on a GPU, but has a 
point of view that is diametrically opposed. However, CUDA makes specialization its strong 
point (produced, developed, and compatible with NVIDIA), ensuring excellent performance at 
the expense of portability. OpenCL offers a solution compatible with nearly all devices on the 
market. Software written in OpenCL can run on processor products from all major industries, 
such as Intel, NVIDIA, IBM, and AMD. OpenCL includes a language to write kernels based on 
C99 (with some restrictions), allowing you to use the hardware available directly in the same 
way as with CUDA-C-Fortran or CUDA. OpenCL provides functions to run highly parallel and 
synchronization primitives, such as indicators for regions of memory and control mechanisms 
for the different platforms of execution. The portability of OpenCL programs, however, is limited 
to the ability to run the same code on different devices, and this ensures that the performance 
is equally reliable. To get the best performance possible, it is fundamental that you refer to 
the execution platform, optimizing the code based on the characteristics of the device. In the 
following recipes, we'll examine the Python implementation of OpenCL called PyOpenCL.

Getting ready
PyOpenCL is to OpenCL what PyCUDA is to CUDA: a Python wrapper to those GPGPU platforms 
(PyOpenCL can run alternatively on both NVIDIA and the AMD GPU card.) It is developed 
and maintained by Andreas Klöckner. Installing PyOpenCL on Windows is easy when using 
the binary package provided by Christoph Gohlke. His webpage contains Windows binary 
installers for the most recent versions of hundreds of Python packages. It is of invaluable help 
for those Python users that use Windows.

With these instructions, you will build a 32-bit PyOpenCL library for a Python 2.7 distro on a 
Windows 7 machine with a NVIDIA GPU card:

1.	 Go to http://www.lfd.uci.edu/~gohlke/pythonlibs/#pyopencl and 
download the file from pyopencl‑2015.1‑cp27‑none‑win32.whl (and the 
relative dependencies if required).

2.	 Download and install the Win32 OpenCL driver (from Intel) from http://
registrationcenter.intel.com/irc_nas/5198/opencl_runtime_15.1_
x86_setup.msi.

3.	 Finally, install the pyOpenCL file from Command Prompt with the command:

pip install pyopencl‑2015.1‑cp27‑none‑win32.whl

http://www.lfd.uci.edu/~gohlke/pythonlibs/#pyopencl
pyopencl2015.1cp27nonewin32.whl
http://registrationcenter.intel.com/irc_nas/5198/opencl_runtime_15.1_x86_setup.msi
http://registrationcenter.intel.com/irc_nas/5198/opencl_runtime_15.1_x86_setup.msi
http://registrationcenter.intel.com/irc_nas/5198/opencl_runtime_15.1_x86_setup.msi
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How to do it…
In this first example, we verify that the PyOpenCL environment is correctly installed.

So, a simple script that can enumerate all major hardware features using the OpenCL library 
is presented as:

import pyopencl as cl

def print_device_info() :
    print('\n' + '=' * 60 + '\nOpenCL Platforms and Devices')
    for platform in cl.get_platforms():
        print('=' * 60)
        print('Platform - Name:  ' + platform.name)
        print('Platform - Vendor:  ' + platform.vendor)
        print('Platform - Version:  ' + platform.version)
        print('Platform - Profile:  ' + platform.profile)

        for device in platform.get_devices():
            print('    ' + '-' * 56)
            print('    Device - Name:  ' \
                  + device.name)
            print('    Device - Type:  ' \
                  + cl.device_type.to_string(device.type))
            print('    Device - Max Clock Speed:  {0} Mhz'\
                  .format(device.max_clock_frequency))
            print('    Device - Compute Units:  {0}'\
                  .format(device.max_compute_units))
            print('    Device - Local Memory:  {0:.0f} KB'\
                  .format(device.local_mem_size/1024.0))
            print('    Device - Constant Memory:  {0:.0f} KB'\
                  .format(device.max_constant_buffer_size/1024.0))
            print('    Device - Global Memory: {0:.0f} GB'\
                  .format(device.global_mem_size/1073741824.0))
            print('    Device - Max Buffer/Image Size: {0:.0f} MB'\
                  .format(device.max_mem_alloc_size/1048576.0))
            print('    Device - Max Work Group Size: {0:.0f}'\
                  .format(device.max_work_group_size))
    print('\n')

if __name__ == "__main__":
    print_device_info()
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The output that shows the main characteristics of the CPU and GPU card that is installed 
should be like this:

C:\Python CookBook\Chapter 6 - GPU Programming with Python\>python 
PyOpenCLDeviceInfo.py

============================================================

OpenCL Platforms and Devices

============================================================

Platform - Name:  NVIDIA CUDA

Platform - Vendor:  NVIDIA Corporation

Platform - Version:  OpenCL 1.1 CUDA 6.0.1

Platform - Profile:  FULL_PROFILE

    --------------------------------------------------------

    Device - Name:  GeForce GT 240

    Device - Type:  GPU

    Device - Max Clock Speed:  1340 Mhz

    Device - Compute Units:  12

    Device - Local Memory:  16 KB

    Device - Constant Memory:  64 KB

    Device - Global Memory: 1 GB

============================================================

Platform - Name:  Intel(R) OpenCL

Platform - Vendor:  Intel(R) Corporation

Platform - Version:  OpenCL 1.2

Platform - Profile:  FULL_PROFILE

    --------------------------------------------------------

    Device - Name:  Intel(R) Core(TM)2 Duo CPU     E6550  @ 2.33GHz

    Device - Type:  CPU

    Device - Max Clock Speed:  2330 Mhz

    Device - Compute Units:  2

    Device - Local Memory:  32 KB

    Device - Constant Memory:  128 KB

    Device - Global Memory: 2 GB
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How it works…
The code is very simple. In the first line, we import the pyopencl module:

import pyopencl as cl

Then, the platform.get_devices() method is used to get a list of devices. For each 
device, the set of its main features are printed on the screen:

ff The name and device type

ff Max clock speed

ff Compute units

ff Local/constant/global memory

How to build a PyOpenCL application
As for programming with PyCUDA, the first step to build a program for PyOpenCL is the 
encoding of the host application. In fact, it is performed on the host computer (typically, 
the user's PC) and then it dispatches the kernel application on the connected devices (GPU 
cards).

The host application must contain five data structures:

ff Device: This identifies the hardware where the kernel code must be executed. A 
PyOpenCL application can be executed on CPU and GPU cards but also in embedded 
devices, such as Field Programmable Gate Array (FPGA).

ff Program: This is a group of kernels. A program selects the kernel that must be 
executed on the device.

ff Kernel: This is the code to be executed on the device. A kernel is essentially a C-like 
function that enables it to be compiled for execution on any device that supports 
OpenCL drivers. A kernel is the only way the host can call a function that will run on a 
device. When the host invokes a kernel, many work items start running on the device. 
Each work item runs the code of the kernel, but works on a different part of the 
dataset.

ff Command queue: Here, each device receives kernels through this data structure. A 
command queue orders the execution of kernels on the device.
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ff Context: This is a group of devices. A context allows devices to receive kernels and 
transfer data.

HOST

context

Kernels

Program

A()
B()
C()
D()

... ...

A() B() C() D()

Device 0 Device 1 Device 2 Device 3

PyOpenCL programming

The preceding figure shows how these data structures can work in a host application. Note 
that a program can contain multiple functions to be executed on the device, and each kernel 
encapsulates only a single function from the program.

How to do it…
In this example, we show you the basic steps to build a PyOpenCL program. The task here is to 
execute the parallel sum of two vectors. In order to maintain a readable output, let's consider 
two vectors each from the 100 elements. The resulting vector will be for each ith element, 
which is the sum of the ith element vector_a and vector_b.

Of course, to be able to appreciate the parallel execution of this code, you can also increase 
some orders whose magnitude is of the size of the vector_dimension input:

import numpy as np
import pyopencl as cl
import numpy.linalg as la

vector_dimension = 100

vector_a = np.random.randint(vector_dimension, size=vector_dimension)
vector_b = np.random.randint(vector_dimension, size=vector_dimension)
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platform = cl.get_platforms()[0]
device = platform.get_devices()[0]

context = cl.Context([device])
queue = cl.CommandQueue(context)

mf = cl.mem_flags
a_g = cl.Buffer(context, mf.READ_ONLY | mf.COPY_HOST_PTR, 
hostbuf=vector_a)
b_g = cl.Buffer(context, mf.READ_ONLY | mf.COPY_HOST_PTR, 
hostbuf=vector_b)

program = cl.Program(context, """
__kernel void vectorSum(__global const int *a_g, __global const int 
*b_g, __global int *res_g) {
  int gid = get_global_id(0);
  res_g[gid] = a_g[gid] + b_g[gid];
}
""").build()

res_g = cl.Buffer(context, mf.WRITE_ONLY, vector_a.nbytes)
program.vectorSum(queue, vector_a.shape, None, a_g, b_g, res_g)

res_np = np.empty_like(vector_a)
cl.enqueue_copy(queue, res_np, res_g)

print ("PyOPENCL SUM OF TWO VECTORS")
print ("Platform Selected = %s" %platform.name )
print ("Device Selected = %s" %device.name)
print ("VECTOR LENGTH = %s" %vector_dimension)
print ("INPUT VECTOR A")
print vector_a
print ("INPUT VECTOR B")
print vector_b
print ("OUTPUT VECTOR RESULT A + B ")
print res_np

assert(la.norm(res_np - (vector_a + vector_b))) < 1e-5

The output from Command Prompt should be like this:

C:\Python CookBook\ Chapter 6 - GPU Programming with Python\Chapter 6 - 
codes>python PyOpenCLParallellSum.py
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Platform Selected = NVIDIA CUDA

Device Selected = GeForce GT 240

VECTOR LENGTH = 100

INPUT VECTOR A

[ 0 29 88 46 68 93 81  3 58 44 95 20 81 69 85 25 89 39 47 29 47 48 20 86 
59 99  3 26 68 62 16 13 63 28 77 57 59 45 52 89 16  6 18 95 30 66 19 29 
31 18 42 34 70 21 28  0 42 96 23 86 64 88 20 26 96 45 28 53 75 53 39 83 
85 99 49 93 23 39  1 89 39 87 62 29 51 66  5 66 48 53 66  8 51  3 29 96 
67 38 22 88]

INPUT VECTOR B

[98 43 16 28 63  1 83 18  6 58 47 86 59 29 60 68 19 51 37 46 99 27  4 94  
5 22 3 96 18 84 29 34 27 31 37 94 13 89  3 90 57 85 66 63  8 74 21 18 34 
93 17 26  9 88 38 28 14 68 88 90 18  6 40 30 70 93 75  0 45 86 15 10 29 
84 47 74 22 72 69 33 81 31 45 62 81 66 69 14 71 96 91 51 35  4 63 36 28 
65 10 41]

OUTPUT VECTOR RESULT A + B

[ 98  72 104  74 131  94 164  21  64 102 142 106 140  98 145  93 108  90

  84  75 146  75  24 180  64 121   6 122  86 146  45  47  90  59 114 151

  72 134  55 179  73  91  84 158  38 140  40  47  65 111  59  60  79 109

  66  28  56 164 111 176  82  94  60  56 166 138 103  53 120 139  54  93

 114 183  96 167  45 111  70 122 120 118 107  91 132 132  74  80 119 149

 157  59  86   7  92 132  95 103  32 129]

How it works…
In the first line of the code after the required module import, we defined the input vectors:

vector_dimension = 100
vector_a = np.random.randint(vector_dimension, size= vector_dimension)
vector_b = np.random.randint(vector_dimension, size= vector_dimension)

Each vector contains 100 integers items that are randomly selected thought the NumPy 
function np.random.randint(max integer , size of the vector).

Then, we must select the device to run the kernel code. To do this, we must first select the 
platform using the PyOpenCL's get_platform()statement:

   platform = cl.get_platforms()[0]
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This platform, as you can see from the output, corresponds to the NVIDIA CUDA platform. 
Then, we must select the device using the platform's get_device() method:

   device = platform.get_devices()[0]

In the following code, the context and queue are defined. PyOpenCL provides the method 
context (device selected) and queue (context selected):

   context = cl.Context([device])
   queue = cl.CommandQueue(context)

To perform the computation in the device, the input vector must be transferred to the device's 
memory. So, two input buffers in the device memory must be created:

mf = cl.mem_flags
a_g = cl.Buffer(context, mf.READ_ONLY | mf.COPY_HOST_PTR, 
hostbuf=vector_a)
b_g = cl.Buffer(context, mf.READ_ONLY | mf.COPY_HOST_PTR, 
hostbuf=vector_b)

Also, we prepare the buffer for the resulting vector:

res_g = cl.Buffer(context, mf.WRITE_ONLY, vector_a.nbytes)

Finally, the core of the script, that is, the kernel code is defined inside program:

program = cl.Program(context, """
__kernel void vectorSum(__global const int *a_g, __global const int 
*b_g, __global int *res_g) {
  int gid = get_global_id(0);
  res_g[gid] = a_g[gid] + b_g[gid];
}
""").build()

The kernel's name is vectorSum, while the parameter list defines the data types of the input 
arguments (vectors of integers) and output data type (a vector of the integer).

In the body of the kernel function, the sum of two vectors is defined as follows:

ff Initialize the vector index: int gid = get_global_id(0)

ff Sum up the vector's components: res_g[gid] = a_g[gid] + b_g[gid];

In OpenCL and PyOpenCL, buffers are attached to a context and are only moved to a device 
once the buffer is used on that device. Finally, we execute vectorSum in the device:

   program.vectorSum(queue, vector_a.shape, None, a_g, b_g, res_g)
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To visualize the results, an empty vector is built:

   res_np = np.empty_like(vector_a)

Then, the result is copied into this vector:

   cl.enqueue_copy(queue, res_np, res_g)

Finally, the results are displayed:

print ("VECTOR LENGTH = %s" %vector_dimension)
print ("INPUT VECTOR A")
print vector_a
print ("INPUT VECTOR B")
print vector_b
print ("OUTPUT VECTOR RESULT A + B ")
print res_np

To check the result, we use the assert statement. It tests the result and triggers an error if 
the condition is false:

assert(la.norm(res_np - (vector_a + vector_b))) < 1e-5

Evaluating element-wise expressions with 
PyOpenCl

Similar to PyCUDA, PyOpenCL provides the functionality in the pyopencl.elementwise 
class that allows us to evaluate the complicated expressions in a single computational pass. 
The method that realized this is:

   ElementwiseKernel(context, argument, operation, name,",",", 
                          optional_parameters)

Here:

ff context: This is the device or the group of devices on which the element-wise 
operation will be executed

ff argument: This is a C-like argument list of all the parameters involved in the 
computation

ff operation: This is a string that represents the operation that is to be performed  
on the argument list

ff name: This is the kernel name associated with ElementwiseKernel

ff optional_parameters: These are not important for this recipe.
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How to do it…
In this example, we will again consider the task of adding two integer vectors of 100 elements. 
The achievement, of course, changes because we use the ElementwiseKernel class, as 
shown:

import pyopencl as cl
import pyopencl.array as cl_array
import numpy as np  

context = cl.create_some_context()  
queue = cl.CommandQueue(context)  

vector_dimension = 100
vector_a = cl_array.to_device(queue,  np.random.randint(vector_
dimension, size=vector_dimension))
vector_b = cl_array.to_device(queue,  np.random.randint(vector_
dimension, size=vector_dimension))  
result_vector = cl_array.empty_like(vector_a)  

elementwiseSum = cl.elementwise.ElementwiseKernel(context, "int *a, 
int *b, int *c", "c[i] = a[i] + b[i]", "sum")
elementwiseSum(vector_a, vector_b, result_vector)  

print ("PyOpenCL ELEMENTWISE SUM OF TWO VECTORS")
print ("VECTOR LENGTH = %s" %vector_dimension)
print ("INPUT VECTOR A")
print vector_a
print ("INPUT VECTOR B")
print vector_b
print ("OUTPUT VECTOR RESULT A + B ")
print result_vector

The output of this code is as follows:

C:\Python CookBook\Chapter 6 - GPU Programming with Python\>python 
PyOpenCLElementwise.py

Choose platform:

[0] <pyopencl.Platform 'NVIDIA CUDA' at 0x2cc6c40>

[1] <pyopencl.Platform 'Intel(R) OpenCL' at 0x3cf440>

Choice [0]:0

Set the environment variable PYOPENCL_CTX='0' to avoid being asked again.
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PyOpenCL ELEMENTWISE SUM OF TWO VECTORS

VECTOR LENGTH = 100

INPUT VECTOR A

[70 95 47 53 71 52 15 10 95  5 76 40 55 87  7 18 44 72  2 42 47 86 58 87 
64 79 44 94  5 54 92 21 60 67 43 92 38 49 97 14 17 35 87 94  3 17 87 24 
50 43  39 71 84  7 64 60 29 74 65 82 42 35 96 80 94 57 21 56 94  8  3 94 
30 64 44  34 79  5 88 80 98 88  5  2 77 57  7 93 49 42 56 19 81 36 19 24 
27 18  1 40]

INPUT VECTOR B

[82 32 72  9 29 29 92  2 20 44 31 91 63 97 86 37 39 41 19 78 60 30 21 69 
29  38 56 49 97 18 44 84 27 73 73 14 67 43 17 58 81 52 89 84 80 96 58 80 
20 91  20 61 92 46 34 98 21 82 52 34 81 45 35 28 23 59 21 89 47 75 49 43 
92 91 84  59 35 61 42 12 69 15 98 85 12 36 64 89 76 29  8 81 62  5 58 13 
46 82 12 66]

OUTPUT VECTOR RESULT A + B

[152 127 119  62 100  81 107  12 115  49 107 131 118 184  93  55  83 113

  21 120 107 116  79 156  93 117 100 143 102  72 136 105  87 140 116 106

 105  92 114  72  98  87 176 178  83 113 145 104  70 134  59 132 176  53

  98 158  50 156 117 116 123  80 131 108 117 116  42 145 141  83  52 137

 122 155 128  93 114  66 130  92 167 103 103  87  89  93  71 182 125  71

  64 100 143  41  77  37  73 100  13 106]

How it works…
In the first line of the script, we import all the requested modules:

import pyopencl as cl  
import pyopencl.array as cl_array  
import numpy  

To initialize the context, we use the cl.create_some_context() method. It asks the user 
which context must be used to perform the calculation:

Choose platform:
[0] <pyopencl.Platform 'NVIDIA CUDA' at 0x2cc6c40>
[1] <pyopencl.Platform 'Intel(R) OpenCL' at 0x3cf440>

Then, we instantiate the queue that will receive ElementwiseKernel:

queue = cl.CommandQueue(context) 
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The input vectors and the result vector are instantiated:

vector_dimension = 100
vector_a = cl_array.to_device(queue,  np.random.randint(vector_
dimension, size=vector_dimension))
vector_b = cl_array.to_device(queue,  np.random.randint(vector_
dimension, size=vector_dimension))  
result_vector = cl_array.empty_like(vector_a)  

The input vectors vector_a and vector_b are integer vectors of random values that are 
obtained using the NumPy's random.radint function. The inputs vectors are defined and 
copied into the device using the PyOpenCL statement:

cl.array_to_device(queue,array) 

Finally, the ElementwiseKernel object is created:

elementwiseSum = cl.elementwise.ElementwiseKernel(context, "int *a, 
int *b, int *c", "c[i] = a[i] + b[i]", "sum")

In this code:

ff All the arguments are in the form of a string formatted as a C argument list (they are 
all integers)

ff A snippet of C carries out the operation, which is the sum of the vector components

ff The function's name is used to compile the kernel ^s

Then, we can call the elementwiseSum function with the arguments defined previously:

elementwiseSum(vector_a, vector_b, result_vector)  

The example ends by printing the input vectors and the result is obtained:

print vector_a
print vector_b
print result_vector

Testing your GPU application with PyOpenCL
In this chapter, we comparatively tested the performance between a CPU and GPU. Before you 
begin the study of the performance of algorithms, it is important to keep in mind the platform 
of execution on which the tests were conducted. In fact, the specific characteristics of these 
systems interfere with the computational time and they represent an aspect of primary 
importance.
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To perform the tests, we used the following machines

ff GPU: GeForce GT 240

ff CPU: Intel Core2 Duo 2.33 Ghz

ff RAM: DDR2 4 Gb

How to do it…
In this test, the computation time of a simple mathematical operation, that is, the sum of two 
vectors with elements expressed in a floating point will be evaluated and compared. To make 
a comparison, the same operation was implemented in two separate functions.

The first one uses only the CPU, while the second is written using PyOpenCL and makes use 
of the GPU for calculation. The test is performed on vectors of a dimension equal to 10,000 
elements.

The code for this is as follows:

from time import time  # Import time tools

import pyopencl as cl  
import numpy as np   
import PyOpeClDeviceInfo as device_info
import numpy.linalg as la

#input vectors 
a = np.random.rand(10000).astype(np.float32)  
b = np.random.rand(10000).astype(np.float32)   

def test_cpu_vector_sum(a, b):  
    c_cpu = np.empty_like(a)   
    cpu_start_time = time()  
    for i in range(10000):
            for j in range(10000):  
                    c_cpu[i] = a[i] + b[i]  
    cpu_end_time = time()   
    print("CPU Time: {0} s".format(cpu_end_time - cpu_start_time))   
    return c_cpu   

def test_gpu_vector_sum(a, b):
    #define the PyOpenCL Context
    platform = cl.get_platforms()[0]
    device = platform.get_devices()[0]
    context = cl.Context([device])
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    queue = cl.CommandQueue(context, \ 
                 properties=cl.command_queue_properties.PROFILING_
ENABLE)   
    
#prepare the data structure
    a_buffer = cl.Buffer\
               (context, \
                cl.mem_flags.READ_ONLY \
                | cl.mem_flags.COPY_HOST_PTR, hostbuf=a)
    b_buffer = cl.Buffer\
               (context, \
                cl.mem_flags.READ_ONLY \
                | cl.mem_flags.COPY_HOST_PTR, hostbuf=b)
    c_buffer = cl.Buffer\
               (context, \
                cl.mem_flags.WRITE_ONLY, b.nbytes)   
    program = cl.Program(context, """
    __kernel void sum(__global const float *a,
                      __global const float *b,
                      __global float *c)
    {
        int i = get_global_id(0);
        int j;
        for(j = 0; j < 10000; j++)
        {
            c[i] = a[i] + b[i];
        }
    }""").build()
    #start the gpu test
    gpu_start_time = time()   
    event = program.sum(queue, a.shape, None, \
                        a_buffer, b_buffer, c_buffer)   
    event.wait()   
    elapsed = 1e-9*(event.profile.end - event.profile.start)   
    print("GPU Kernel evaluation Time: {0} s".format(elapsed))   
    c_gpu = np.empty_like(a)  
    cl.enqueue_read_buffer(queue, c_buffer, c_gpu).wait()  
    gpu_end_time = time()  
    print("GPU Time: {0} s".format(gpu_end_time - gpu_start_time))   
    return c_gpu   

#start the test
if __name__ == "__main__":
    #print the device info
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    device_info.print_device_info()
    #call the test on the cpu
    cpu_result = test_cpu_vector_sum(a, b)
    #call the test on the gpu
    gpu_result = test_gpu_vector_sum(a, b)
    #
    assert (la.norm(cpu_result - gpu_result)) < 1e-5 

The output of the test is as follows, where the device information with the execution time is 
printed out:

C:\Python Cook\Chapter 6 - GPU Programming with Python\Chapter 6 - 
codes>python PyOpenCLTestApplication.py

============================================================

OpenCL Platforms and Devices

============================================================

Platform - Name:  NVIDIA CUDA

Platform - Vendor:  NVIDIA Corporation

Platform - Version:  OpenCL 1.1 CUDA 6.0.1

Platform - Profile:  FULL_PROFILE

    --------------------------------------------------------

    Device - Name:  GeForce GT 240

    Device - Type:  GPU

    Device - Max Clock Speed:  1340 Mhz

    Device - Compute Units:  12

    Device - Local Memory:  16 KB

    Device - Constant Memory:  64 KB

    Device - Global Memory: 1 GB

    Device - Max Buffer/Image Size: 256 MB

    Device - Max Work Group Size: 512

============================================================

Platform - Name:  Intel(R) OpenCL

Platform - Vendor:  Intel(R) Corporation

Platform - Version:  OpenCL 1.2

Platform - Profile:  FULL_PROFILE

    --------------------------------------------------------

    Device - Name:  Intel(R) Core(TM)2 Duo CPU     E6550  @ 2.33GHz

    Device - Type:  CPU
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    Device - Max Clock Speed:  2330 Mhz

    Device - Compute Units:  2

    Device - Local Memory:  32 KB

    Device - Constant Memory:  128 KB

    Device - Global Memory: 2 GB

    Device - Max Buffer/Image Size: 512 MB

    Device - Max Work Group Size: 8192

CPU Time: 71.9769999981 s

GPU Kernel Time: 0.075756608 s

GPU Time: 0.0809998512268 s

Even if the test is not computationally expansive, it provides useful indications of the potential 
of a GPU card.

How it works…
As explained in the preceding section, the test consists of two parts. The code that runs on 
the CPU and the code that runs on the GPU. Both were taken to the execution time.

Regarding the test on the CPU, the test_cpu_vector_sum function has been implemented. 
It consists of two loops on 10,000 vectors elements:

              cpu_start_time = time()  
                for i in range(10000):
                           for j in range(10000):  
                       c_cpu[i] = a[i] + b[i]  
                cpu_end_time = time()   

The sum operation of the ith vector components is executed 1,000,000,000 times, and it will 
be computationally expensive.

The total CPU time will have the following difference:

    CPU Time = cpu_end_time - cpu_start_time

To test the GPU time, we implemented the regular definition schema of an application for 
PyOpenCL:

ff We established the definition of the device and context

ff We set up the queue for execution



GPU Programming with Python

256

ff We created memory areas to perform the computation on the device (three buffers 
defined as a_buffer, b_buffer, c_buffer)

ff We built the kernel

ff We evaluated the kernel call and GPU time:

gpu_start_time = time()   
             event = program.sum(queue, a.shape, None, \
                        a_buffer, b_buffer, c_buffer)   
             
             cl.enqueue_read_buffer(queue, c_buffer, c_gpu).wait()  
   gpu_end_time = time()

Here, GPU Time =  gpu_end_time - gpu_start_time.

Finally, in the main program we call the testing function and print_device_info() that we 
defined previously:

if __name__ == "__main__":
    device_info.print_device_info()
    cpu_result = test_cpu_vector_sum(a, b)
    gpu_result = test_gpu_vector_sum(a, b)
    assert (la.norm(cpu_result - gpu_result)) < 1e-5

To check the result, we used the assert statement that verifies the result and triggers an 
error if the condition is false.
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