

Python Parallel
Programming
Cookbook

Master efficient parallel programming to build powerful
applications using Python

Giancarlo Zaccone

BIRMINGHAM - MUMBAI

Python Parallel Programming Cookbook

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: August 2015

Production reference: 1210815

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-958-3

www.packtpub.com

Credits

Author
Giancarlo Zaccone

Reviewers
Aditya Avinash

Ravi Chityala

Mike Galloy

Ludovic Gasc

Commissioning Editor
Sarah Crofton

Acquisition Editor
Meeta Rajani

Content Development Editor
Rashmi Suvarna

Technical Editor
Mrunmayee Patil

Copy Editor
Neha Vyas

Project Coordinator
Judie Jose

Proofreader
Safis Editing

Indexer
Mariammal Chettiyar

Graphics
Sheetal Aute

Disha Haria

Jason Monterio

Abhinash Sahu

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

About the Author

Giancarlo Zaccone has more than 10 years of experience in managing research projects,
both in scientific and industrial domains. He worked as a researcher at the National Research
Council (CNR), where he was involved in a few parallel numerical computing and scientific
visualization projects.

He currently works as a software engineer at a consulting company, developing and
maintaining software systems for space and defense applications.

Giancarlo holds a master's degree in physics from the University of Naples Federico II and has
completed a second-level postgraduate master's program in scientific computing from the
Sapienza University of Rome.

You can know more about him at https://it.linkedin.com/in/giancarlozaccone.

https://it.linkedin.com/in/giancarlozaccone

About the Reviewers

Aditya Avinash is a graduate student who focuses on computer graphics and GPUs. His
areas of interest are compilers, drivers, physically based rendering, and real-time rendering.
His current focus is on making a contribution to MESA (the open source graphics driver
stack for Linux), where he will implement OpenGL extensions for the AMD backend. This is
something that he is really excited about. He also likes writing compilers to translate high-
level abstraction code into GPU code. He has developed Urutu, which gives GPUs thread-
level parallelism with Python. For this, NVIDIA funded him with a couple of Tesla K40 GPUs.
Currently, he is working on RockChuck, translating the Python code (written using data
parallel abstraction) into GPU/CPU code, depending on the available backend. This project
was started after he reviewed the opinions of a lot of Python programmers who wanted data
parallel abstraction for Python and GPUs.

He has a computer engineering background, where he designed hardware and software to fit
certain applications (ASIC). From this, he gained experience of how to use FPGAs and HDLs.
Apart from this, he mainly programs using Python and C++. In C++, he uses OpenGL, CUDA,
OpenCL, and other multicore programming APIs. Since he is a student, most of his work is
not affiliated with any institution or person.

Ravi Chityala is a senior engineer at Elekta Inc. He has more than 12 years of experience
in image processing and scientific computing. He is also a part time instructor at the
University of California, Santa Cruz Extension, San Jose, CA, where he teaches advanced
Python to programmers. He began using Python as a scripting tool and fell in love with the
language's simplicity, power, and expressiveness. He now uses it for web development,
scientific prototyping and computing, and he uses it as a glue to automate the process. He
combined his experience in image processing and his love for Python and coauthored the
book Image Acquisition and Processing using Python, published by CRC Press.

Mike Galloy is a software developer who focuses on high-performance computing and
visualization in scientific programming. He works mostly on IDL, but occasionally uses C,
CUDA, and Python. He currently works for the National Center for Atmospheric Research
(NCAR) at the Mauna Loa Solar Observatory. Previously, he worked for Tech-X Corporation,
where he was the main developer for GPULib, a library of IDL bindings for GPU-accelerated
computation routines. He is the creator and main developer of the open source projects,
IDLdoc, mgunit, and rIDL, as well as the author of the book Modern IDL.

Ludovic Gasc is a senior software developer and engineer at Eyepea and ALLOcloud, a
highly renowned open source VoIP and unified communications company in Europe.

Over the last 5 years, he has developed redundant distributed systems for the telecom sector
that are based on Python, AsyncIO, PostgreSQL, and Redis.

You can contact him on his blog at http://www.gmludo.eu.

He is also the creator of the blog API-Hour: Write efficient network daemons (HTTP, SSH) with
ease. For more information, visit http://www.api-hour.io.

http://www.gmludo.eu
http://www.api-hour.io

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print, and bookmark content

ff On demand and accessible via a web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for immediate
access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

i

Table of Contents
Preface	 v
Chapter 1: Getting Started with Parallel Computing and Python	 1

Introduction	 2
The parallel computing memory architecture	 3
Memory organization	 6
Parallel programming models	 14
How to design a parallel program	 16
How to evaluate the performance of a parallel program	 19
Introducing Python	 21
Python in a parallel world	 26
Introducing processes and threads	 26
Start working with processes in Python	 27
Start working with threads in Python	 29

Chapter 2: Thread-based Parallelism	 33
Introduction	 34
Using the Python threading module	 35
How to define a thread	 35
How to determine the current thread	 37
How to use a thread in a subclass	 39
Thread synchronization with Lock and RLock	 41
Thread synchronization with RLock	 45
Thread synchronization with semaphores	 48
Thread synchronization with a condition	 52
Thread synchronization with an event	 55
Using the with statement	 59
Thread communication using a queue	 62
Evaluating the performance of multithread applications	 66

ii

Table of Contents

Chapter 3: Process-based Parallelism	 73
Introduction	 74
How to spawn a process	 75
How to name a process	 77
How to run a process in the background	 79
How to kill a process	 81
How to use a process in a subclass	 82
How to exchange objects between processes	 84
How to synchronize processes	 90
How to manage a state between processes	 93
How to use a process pool	 95
Using the mpi4py Python module	 97
Point-to-point communication	 101
Avoiding deadlock problems	 104
Collective communication using broadcast	 108
Collective communication using scatter	 110
Collective communication using gather	 114
Collective communication using Alltoall	 116
The reduction operation	 118
How to optimize communication	 120

Chapter 4: Asynchronous Programming	 127
Introduction	 127
Using the concurrent.futures Python modules	 128
Event loop management with Asyncio	 134
Handling coroutines with Asyncio	 138
Task manipulation with Asyncio	 143
Dealing with Asyncio and Futures	 147

Chapter 5: Distributed Python	 151
Introduction	 151
Using Celery to distribute tasks	 152
How to create a task with Celery	 154
Scientific computing with SCOOP	 158
Handling map functions with SCOOP	 163
Remote Method Invocation with Pyro4	 167
Chaining objects with Pyro4	 171
Developing a client-server application with Pyro4	 177
Communicating sequential processes with PyCSP	 184
Using MapReduce with Disco	 190
A remote procedure call with RPyC	 195

iii

Table of Contents

Chapter 6: GPU Programming with Python	 199
Introduction	 200
Using the PyCUDA module	 201
How to build a PyCUDA application	 207
Understanding the PyCUDA memory model with matrix manipulation	 212
Kernel invocations with GPUArray	 218
Evaluating element-wise expressions with PyCUDA	 220
The MapReduce operation with PyCUDA	 225
GPU programming with NumbaPro	 229
Using GPU-accelerated libraries with NumbaPro	 234
Using the PyOpenCL module	 240
How to build a PyOpenCL application	 243
Evaluating element-wise expressions with PyOpenCl	 248
Testing your GPU application with PyOpenCL	 251

Index	 257

v

Preface
The study of computer science should cover not only the principles on which computational
processing is based, but should also reflect the current state of knowledge of these fields.
Today, the technology requires that professionals from all branches of computer science know
both the software and hardware whose interaction at all levels is the key to understanding the
basics of computational processing.

For this reason, in this book, a special focus is given on the relationship between hardware
architectures and software.

Until recently, programmers could rely on the work of the hardware designers, compilers,
and chip manufacturers to make their software programs faster or more efficient without
the need for changes.

This era is over. So now, if a program is to run faster, it must become a parallel program.

Although the goal of many researchers is to ensure that programmers are not aware of the
parallel nature of the hardware for which they write their programs, it will take many years
before this actually becomes possible. Nowadays, most programmers need to thoroughly
understand the link between hardware and software so that the programs can be run
efficiently on modern computer architectures.

To introduce the concepts of parallel programming, the Python programming language has
been adopted. Python is fun and easy to use, and its popularity has grown steadily in recent
years. Python was developed more than 10 years ago by Guido van Rossum, who derived
Python's syntax simplicity and ease of use largely from ABC, which is a teaching language
that was developed in the 80s.

Preface

vi

In addition to this specific context, Python was created to solve real-life problems, and it
borrows a wide variety of typical characteristics of programming languages, such as C ++,
Java, and Scheme. This is one of its most remarkable features, which has led to its broad
appeal among professional software developers, the scientific research industry, and
computer science educators. One of the reasons why Python is liked so much is because
it provides the best balance between the practical and conceptual approaches. It is an
interpreted language, so you can start doing things immediately without getting lost in the
problems of compilation and linking. Python also provides an extensive software library that
can be used in all sorts of tasks ranging from the Web, graphics, and of course, parallel
computing. This practical aspect is a great way to engage readers and allow them to carry out
projects that are important in this book.

This book contains a wide variety of examples that are inspired by many situations, and
these offer you the opportunity to solve real-life problems. This book examines the principles
of software design for parallel architectures, insisting on the importance of clarity of the
programs and avoiding the use of complex terminology in favor of clear and direct examples.
Each topic is presented as part of a complete, working Python program, which is followed by
the output of the program in question.

The modular organization of the various chapters provides a proven path to move from the
simplest arguments to the most advanced ones, but this is also suitable for those who only
want to learn a few specific issues.

I hope that the settings and content of this book are able to provide you with a useful
contribution for your better understanding and dissemination of parallel programming
techniques.

What this book covers
Chapter 1, Getting Started with Parallel Computing and Python, gives you an overview of
parallel programming architectures and programming models. This chapter introduces the
Python programming language, the characteristics of the language, its ease of use and
learning, extensibility, and richness of software libraries and applications. It also shows
you how to make Python a valuable tool for any application, and also, of course, for parallel
computing.

Chapter 2, Thread-based Parallelism, discusses thread parallelism using the threading Python
module. Through complete programming examples, you will learn how to synchronize and
manipulate threads to implement your multithreading applications.

Chapter 3, Process-based Parallelism, will guide through the process-based approach
to parallelize a program. A complete set of examples will show you how to use the
multiprocessing Python module. Also, this chapter will explain how to perform communication
through processes, using the message passing parallel programming paradigm via the mpi4py
Python module.

Preface

vii

Chapter 4, Asynchronous Programming, explains the asynchronous model for concurrent
programming. In some ways, it is simpler than the threaded one because there is a single
instruction stream and tasks explicitly relinquish control instead of being suspended
arbitrarily. This chapter will show you how to use the Python asyncio module to organize each
task as a sequence of smaller steps that must be executed in an asynchronous manner.

Chapter 5, Distributed Python, introduces you to distributed computing. It is the process of
aggregating several computing units logically and may even be geographically distributed
to collaboratively run a single computational task in a transparent and coherent way. This
chapter will present some of the solutions proposed by Python for the implementation of
these architectures using the OO approach, Celery, SCOOP, and remote procedure calls, such
as Pyro4 and RPyC. It will also include different approaches, such as PyCSP, and finally, Disco,
which is the Python version of the MapReduce algorithm.

Chapter 6, GPU Programming with Python, describes the modern Graphics Processing
Units (GPUs) that provide breakthrough performance for numerical computing at the cost of
increased programming complexity. In fact, the programming models for GPUs require the
programmer to manually manage the data transfer between a CPU and GPU. This chapter will
teach you, through the programming examples and use cases, how to exploit the computing
power provided by the GPU cards, using the powerful Python modules: PyCUDA, NumbaPro,
and PyOpenlCL.

What you need for this book
All the examples of this book can be tested in a Windows 7 32-bit machine. Also, a Linux
environment will be useful.

The Python versions needed to run the examples are:

ff Python 3.3 (for the first five chapters)

ff Python 2.7 (only for Chapter 6, GPU Programming with Python)

The following modules (all of which are freely downloadable) are required:

ff mpich-3.1.4

ff pip 6.1.1

ff mpi4py1.3.1

ff asyncio 3.4.3

ff Celery 3.1.18

ff Numpy 1.9.2

ff Flower 0.8.32 (optional)

ff SCOOP 0.7.2

Preface

viii

ff Pyro 4.4.36

ff PyCSP 0.9.0

ff DISCO 0.5.2

ff RPyC 3.3.0

ff PyCUDA 2015.1.2

ff CUDA Toolkit 4.2.9 (at least)

ff NVIDIA GPU SDK 4.2.9 (at least)

ff NVIDIA GPU driver

ff Microsoft Visual Studio 2008 C++ Express Edition (at least)

ff Anaconda Python Distribution

ff NumbaPro compiler

ff PyOpenCL 2015.1

ff Win32 OpenCL Driver 15.1 (at least)

Who this book is for
This book is intended for software developers who want to use parallel programming
techniques to write powerful and efficient code. After reading this book, you will be able to
master the basics and the advanced features of parallel computing. The Python programming
language is easy to use and allows nonexperts to deal with and easily understand the topics
exposed in this book.

Sections
This book contains the following sections:

Getting ready
This section tells us what to expect in the recipe and describes how to set up any software or
any preliminary settings needed for the recipe.

How to do it…
This section characterizes the steps that are to be followed to "cook" the recipe.

Preface

ix

How it works…
This section usually consists a brief and detailed explanation of what happened in the
previous section.

There's more…
This section consists of additional information about the recipe in order to make the reader
more anxious about the recipe.

See also
This section may contain references to the recipe.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "To execute
this first example, we need the program helloPythonWithThreads.py."

A block of code is set as follows:

print ("Hello Python Parallel Cookbook!!")

closeInput = raw_input("Press ENTER to exit")

print "Closing calledProcess"

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

@asyncio.coroutine
def factorial(number):
do Something

@asyncio.coroutine

Any command-line input or output is written as follows:

C:\>mpiexec -n 4 python virtualTopology.py

Preface

x

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Open an admin Command
Prompt by right-clicking on the command prompt icon and select Run as administrator."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

www.packtpub.com/authors
http://www.packtpub.com/support

Preface

xi

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—
we would be grateful if you would report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any errata,
please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the errata submission form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded on our website, or added to any list of existing errata, under the Errata section
of that title. Any existing errata can be viewed by selecting your title from http://www.
packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors, and our ability to bring you valuable
content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
http://www.packtpub.com/support

1

1
Getting Started with

Parallel Computing
and Python

In this chapter, we will cover the following recipes:

ff What is parallel computing?

ff The parallel computing memory architecture

ff Memory organization

ff Parallel programming models

ff How to design a parallel program

ff How to evaluate the performance of a parallel program

ff Introducing Python

ff Python in a parallel world

ff Introducing processes and threads

ff Start working with processes and Python

ff Start working with threads and Python

Getting Started with Parallel Computing and Python

2

Introduction
This chapter gives you an overview of parallel programming architectures and programming
models. These concepts are useful for inexperienced programmers who have approached
parallel programming techniques for the first time. This chapter can be a basic reference
for the experienced programmers. The dual characterization of parallel systems is also
presented in this chapter. The first characterization is based on the architecture of the
system and the second characterization is based on parallel programming paradigms.
Parallel programming will always be a challenge for programmers. This programming-based
approach is further described in this chapter, when we present the design procedure of a
parallel program. The chapter ends with a brief introduction of the Python programming
language. The characteristics of the language, ease of use and learning, and extensibility
and richness of software libraries and applications make Python a valuable tool for any
application and also, of course, for parallel computing. In the final part of the chapter, the
concepts of threads and processes are introduced in relation to their use in the language.
A typical way to solve a problem of a large-size is to divide it into smaller and independent
parts in order to solve all the pieces simultaneously. A parallel program is intended for a
program that uses this approach, that is, the use of multiple processors working together
on a common task. Each processor works on its section (the independent part) of the
problem. Furthermore, a data information exchange between processors could take place
during the computation. Nowadays, many software applications require more computing
power. One way to achieve this is to increase the clock speed of the processor or to increase
the number of processing cores on the chip. Improving the clock speed increases the heat
dissipation, thereby decreasing the performance per watt and moreover, this requires special
equipment for cooling. Increasing the number of cores seems to be a feasible solution, as
power consumption and dissipation are way under the limit and there is no significant gain in
performance.

To address this problem, computer hardware vendors decided to adopt multi-core
architectures, which are single chips that contain two or more processors (cores). On the
other hand, the GPU manufactures also introduced hardware architectures based on multiple
computing cores. In fact, today's computers are almost always present in multiple and
heterogeneous computing units, each formed by a variable number of cores, for example, the
most common multi-core architectures.

Therefore, it became essential for us to take advantage of the computational resources
available, to adopt programming paradigms, techniques, and instruments of parallel
computing.

Chapter 1

3

The parallel computing memory architecture
Based on the number of instructions and data that can be processed simultaneously,
computer systems are classified into four categories:

ff Single instruction, single data (SISD)

ff Single instruction, multiple data (SIMD)

ff Multiple instruction, single data (MISD)

ff Multiple instruction, multiple data (MIMD)

This classification is known as Flynn's taxonomy.

SISD

Single Instruction
Single Data

SIMD

Single Instruction
Multiple Data

MISD

Multiple Instructions
Single Data

Multiple Instructions
Multiple Data

SISD
The SISD computing system is a uniprocessor machine. It executes a single instruction that
operates on a single data stream. In SISD, machine instructions are processed sequentially.

In a clock cycle, the CPU executes the following operations:

ff Fetch: The CPU fetches the data and instructions from a memory area, which is
called a register.

ff Decode: The CPU decodes the instructions.

ff Execute: The instruction is carried out on the data. The result of the operation is
stored in another register.

Getting Started with Parallel Computing and Python

4

Once the execution stage is complete, the CPU sets itself to begin another CPU cycle.

Control Processor MemoryInstruction Data

The SISD architecture schema

The algorithms that run on these types of computers are sequential (or serial), since they
do not contain any parallelism. Examples of SISD computers are hardware systems with
a single CPU.

The main elements of these architectures (Von Neumann architectures) are:

ff Central memory unit: This is used to store both instructions and program data

ff CPU: This is used to get the instruction and/or data from the memory unit, which
decodes the instructions and sequentially implements them

ff The I/O system: This refers to the input data and output data of the program

The conventional single processor computers are classified as SISD systems. The following
figure specifically shows which areas of a CPU are used in the stages of fetch, decode, and
execute:

Fetch Decode Execute

Arithmetic Logic
Unit

Registers

Control Unit

Decode Unit

Bus Unit
Data

Cache

Instruction

Cache

CPU's components in the fetch-decode-execute phase

Chapter 1

5

MISD
In this model, n processors, each with their own control unit, share a single memory unit.
In each clock cycle, the data received from the memory is processed by all processors
simultaneously, each in accordance with the instructions received from its control unit. In
this case, the parallelism (instruction-level parallelism) is obtained by performing several
operations on the same piece of data. The types of problems that can be solved efficiently
in these architectures are rather special, such as those regarding data encryption; for this
reason, the computer MISD did not find space in the commercial sector. MISD computers are
more of an intellectual exercise than a practical configuration.

Control 1

Control 2

Control N

Processor 1

Processor 2

Processor N

Memory

Instruction 1

Instruction 2

Instruction N

Data

Data

Data

The MISD architecture scheme

SIMD
A SIMD computer consists of n identical processors, each with its own local memory, where
it is possible to store data. All processors work under the control of a single instruction
stream; in addition to this, there are n data streams, one for each processor. The processors
work simultaneously on each step and execute the same instruction, but on different data
elements. This is an example of data-level parallelism. The SIMD architectures are much more
versatile than MISD architectures. Numerous problems covering a wide range of applications
can be solved by parallel algorithms on SIMD computers. Another interesting feature is that
the algorithms for these computers are relatively easy to design, analyze, and implement. The
limit is that only the problems that can be divided into a number of subproblems (which are
all identical, each of which will then be solved contemporaneously, through the same set of
instructions) can be addressed with the SIMD computer. With the supercomputer developed
according to this paradigm, we must mention the Connection Machine (1985 Thinking
Machine) and MPP (NASA - 1983). As we will see in Chapter 6, GPU Programming with Python,
the advent of modern graphics processor unit (GPU), built with many SIMD embedded units
has lead to a more widespread use of this computational paradigm.

Getting Started with Parallel Computing and Python

6

MIMD
This class of parallel computers is the most general and more powerful class according to
Flynn's classification. There are n processors, n instruction streams, and n data streams
in this. Each processor has its own control unit and local memory, which makes MIMD
architectures more computationally powerful than those used in SIMD. Each processor
operates under the control of a flow of instructions issued by its own control unit; therefore,
the processors can potentially run different programs on different data, solving subproblems
that are different and can be a part of a single larger problem. In MIMD, architecture is
achieved with the help of the parallelism level with threads and/or processes. This also
means that the processors usually operate asynchronously. The computers in this class
are used to solve those problems that do not have a regular structure that is required by
the model SIMD. Nowadays, this architecture is applied to many PCs, supercomputers, and
computer networks. However, there is a counter that you need to consider: asynchronous
algorithms are difficult to design, analyze, and implement.

Control 1

Control 2

Control N

Processor 1

Processor 2

Processor N

Instruction 1

Instruction 2

Instruction N

Data

Data

Data

Memory

Shared

Network

Interconnection

The MIMD architecture scheme

Memory organization
Another aspect that we need to consider to evaluate a parallel architecture is memory
organization or rather, the way in which the data is accessed. No matter how fast the
processing unit is, if the memory cannot maintain and provide instructions and data at a
sufficient speed, there will be no improvement in performance. The main problem that must
be overcome to make the response time of the memory compatible with the speed of the
processor is the memory cycle time, which is defined as the time that has elapsed between
two successive operations. The cycle time of the processor is typically much shorter than
the cycle time of the memory. When the processor starts transferring data (to or from the
memory), the memory will remain occupied for the entire time of the memory cycle: during
this period, no other device (I/O controller, processor, or even the processor itself that made
the request) can use the memory because it will be committed to respond to the request.

Chapter 1

7

Shared MemoryDistributed Memory

MPP Cluster of
Workstation

UMA NUMA NORMA COMA

MIMD

The memory organization in MIMD architecture

Solutions to the problem of access memory resulted in a dichotomy of MIMD architectures.
In the first type of system, known as the shared memory system, there is high virtual memory
and all processors have equal access to data and instructions in this memory. The other type
of system is the distributed memory model, wherein each processor has a local memory that
is not accessible to other processors. The difference between shared memory and distributed
memory lies in the structure of the virtual memory or the memory from the perspective of
the processor. Physically, almost every system memory is divided into distinct components
that are independently accessible. What distinguishes a shared memory from a distributed
memory is the memory access management by the processing unit. If a processor were
to execute the instruction load R0, i, which means load in the R0 register the contents of
the memory location i, the question now is what should happen? In a system with shared
memory, the i index is a global address and the memory location i is the same for each
processor. If two processors were to perform this instruction at the same time, they would
load the same information in their registers R0. In a distributed memory system, i is a local
address. If two processors were to load the statement R0 at the same time, different values
may end up in the respective register's R0, since, in this case, the memory cells are allotted
one for each local memory. The distinction between shared memory and distributed memory
is very important for programmers because it determines the way in which different parts of
a parallel program must communicate. In a system, shared memory is sufficient to build a
data structure in memory and go to the parallel subroutine, which are the reference variables
of this data structure. Moreover, a distributed memory machine must make copies of shared
data in each local memory. These copies are created by sending a message containing the
data to be shared from one processor to another. A drawback of this memory organization is
that sometimes, these messages can be very large and take a relatively long transfer time.

Getting Started with Parallel Computing and Python

8

Shared memory
The schema of a shared memory multiprocessor system is shown in the following figure. The
physical connections here are quite simple. The bus structure allows an arbitrary number
of devices that share the same channel. The bus protocols were originally designed to allow
a single processor, and one or more disks or tape controllers to communicate through the
shared memory here. Note that each processor has been associated with a cache memory,
as it is assumed that the probability that a processor needs data or instructions present in
the local memory is very high. The problem occurs when a processor modifies data stored in
the memory system that is simultaneously used by other processors. The new value will pass
from the processor cache that has been changed to shared memory; later, however, it must
also be passed to all the other processors, so that they do not work with the obsolete value.
This problem is known as the problem of cache coherency, a special case of the problem of
memory consistency, which requires hardware implementations that can handle concurrency
issues and synchronization similar to those having thread programming.

Processor Processor Processor Processor

cache cache cache cache

Main Memory I/O System

The shared memory architecture schema

The main features of shared memory systems are:

ff The memory is the same for all processors, for example, all the processors associated
with the same data structure will work with the same logical memory addresses, thus
accessing the same memory locations.

ff The synchronization is made possible by controlling the access of processors to the
shared memory. In fact, only one processor at a time can have access to the memory
resources.

Chapter 1

9

ff A shared memory location must not be changed from a task while another task
accesses it.

ff Sharing data is fast; the time required for the communication between two tasks is
equal to the time for reading a single memory location (it is depending on the speed
of memory access).

The memory access in shared memory systems are as follows:

ff Uniform memory access (UMA): The fundamental characteristic of this system is the
access time to the memory that is constant for each processor and for any area of
memory. For this reason, these systems are also called as symmetric multiprocessor
(SMP). They are relatively simple to implement, but not very scalable; the
programmer is responsible for the management of the synchronization by inserting
appropriate controls, semaphores, locks, and so on in the program that manages
resources.

ff Non-uniform memory access (NUMA): These architectures divide the memory area
into a high-speed access area that is assigned to each processor and a common
area for the data exchange, with slower access. These systems are also called as
Distributed Shared Memory Systems (DSM). They are very scalable, but complex to
develop.

ff No remote memory access (NORMA): The memory is physically distributed among
the processors (local memory). All local memories are private and can only access
the local processor. The communication between the processors is through a
communication protocol used for exchange of messages, the message-passing
protocol.

ff Cache only memory access (COMA): These systems are equipped with only
cache memories. While analyzing NUMA architectures, it was noticed that these
architectures kept the local copies of the data in the cache and that these data were
stored as duplication in the main memory. This architecture removes duplicates
and keeps only the cache memories, the memory is physically distributed among
the processors (local memory). All local memories are private and can only access
the local processor. The communication between the processors is through a
communication protocol for exchange of messages, the message-passing protocol.

Getting Started with Parallel Computing and Python

10

Distributed memory
In a system with distributed memory, the memory is associated with each processor and a
processor is only able to address its own memory. Some authors refer to this type of system
as "multicomputer", reflecting the fact that the elements of the system are themselves small
complete systems of a processor and memory, as you can see in the following figure:

Processor +
cache

Processor +
cache

Processor +
cache

Processor +
cache

Interconnection Network

mem I/O

Processor +
cache

mem I/O

Processor +
cache

mem I/O

Processor +
cache

mem I/O

Processor +
cache

mem I/O

mem I/O mem I/O mem I/O

The distributed memory architecture scheme

This kind of organization has several advantages. At first, there are no conflicts at the level
of the communication bus or switch. Each processor can use the full bandwidth of their
own local memory without any interference from other processors. Secondly, the lack of a
common bus means that there is no intrinsic limit to the number of processors, the size
of the system is only limited by the network used to connect the processors. Thirdly, there
are no problems of cache coherency. Each processor is responsible for its own data and
does not have to worry about upgrading any copies. The main disadvantage is that the
communication between processors is more difficult to implement. If a processor requires
data in the memory of another processor, the two processors should necessarily exchange
messages via the message-passing protocol. This introduces two sources of slowdown; to
build and send a message from one processor to another takes time, and also, any processor
should be stopped in order to manage the messages received from other processors. A
program designed to work on a distributed memory machine must be organized as a set of
independent tasks that communicate via messages.

Chapter 1

11

Memory Memory

data data

Basic message passing

The main features of distributed memory systems are as follows:

ff Memory is physically distributed between processors; each local memory is directly
accessible only by its processor.

ff Synchronization is achieved by moving data (even if it's just the message itself)
between processors (communication).

ff The subdivision of data in the local memories affects the performance of the
machine—it is essential to make a subdivision accurate, so as to minimize the
communication between the CPUs. In addition to this, the processor that coordinates
these operations of decomposition and composition must effectively communicate
with the processors that operate on the individual parts of data structures.

ff The message-passing protocol is used so that the CPU's can communicate with
each other through the exchange of data packets. The messages are discrete units
of information; in the sense that they have a well-defined identity, so it is always
possible to distinguish them from each other.

Massively parallel processing
MPP machines are composed of hundreds of processors (which can be as large as hundreds
of thousands in some machines) that are connected by a communication network. The fastest
computers in the world are based on these architectures; some example systems of these
architectures are: Earth Simulator, Blue Gene, ASCI White, ASCI Red, and ASCI Purple and
Red Storm.

Getting Started with Parallel Computing and Python

12

A cluster of workstations
These processing systems are based on classical computers that are connected by
communication networks. The computational clusters fall into this classification.

An example of a cluster of workstation architecture

In a cluster architecture, we define a node as a single computing unit that takes part in the
cluster. For the user, the cluster is fully transparent—all the hardware and software complexity is
masked and data and applications are made accessible as if they were all from a single node.

Here, we've identified three types of clusters:

ff The fail-over cluster: In this, the node's activity is continuously monitored, and when
one stops working, another machine takes over the charge of those activities. The
aim is to ensure a continuous service due to the redundancy of the architecture.

ff The load balancing cluster: In this system, a job request is sent to the node that has
less activity. This ensures that less time is taken to complete the process.

ff The high-performance computing cluster: In this, each node is configured to provide
extremely high performance. The process is also divided in multiple jobs on multiple
nodes. The jobs are parallelized and will be distributed to different machines.

Chapter 1

13

The heterogeneous architecture
The introduction of GPU accelerators in the homogeneous world of supercomputing has
changed the nature of how supercomputers were both used and programmed previously.
Despite the high performance offered by GPUs, they cannot be considered as an autonomous
processing unit as they should always be accompanied by a combination of CPUs. The
programming paradigm, therefore, is very simple; the CPU takes control and computes in a
serial manner, assigning to the graphic accelerator the tasks that are computationally very
expensive and have a high degree of parallelism. The communication between a CPU and
GPU can take place not only through the use of a high-speed bus, but also through the sharing
of a single area of memory for both physical or virtual. In fact, in the case where both the
devices are not equipped with their own memory areas, it is possible to refer to a common
memory area using the software libraries provided by the various programming models,
such as CUDA and OpenCL. These architectures are called heterogeneous architectures,
wherein applications can create data structures in a single address space and send a job to
the device hardware appropriate for the resolution of the task. Several processing tasks can
operate safely on the same regions to avoid data consistency problems, thanks to the atomic
operations. So, despite the fact that the CPU and GPU do not seem to work efficiently together,
with the use of this new architecture, we can optimize their interaction with and performance
of parallel applications.

Core 1

Core 3

Core 2

Core 4

CPU

GPU

Multiprocessor N-1 Multiprocessor N

Multiprocessor 1 Multiprocessor 2

Multiprocessor 3 Multiprocessor 4

The heterogeneous architecture scheme

Getting Started with Parallel Computing and Python

14

Parallel programming models
Parallel programming models exist as an abstraction of hardware and memory architectures.
In fact, these models are not specific and do not refer to particular types of machines or
memory architectures. They can be implemented (at least theoretically) on any kind of
machines. Compared to the previous subdivisions, these programming models are made at
a higher level and represent the way in which the software must be implemented to perform
a parallel computation. Each model has its own way of sharing information with other
processors in order to access memory and divide the work.

There is no better programming model in absolute terms; the best one to apply will depend
very much on the problem that a programmer should address and resolve. The most widely
used models for parallel programming are:

ff The shared memory model

ff The multithread model

ff The distributed memory/message passing model

ff The data parallel model

In this recipe, we will give you an overview of these models. A more accurate description
will be in the next chapters that will introduce you to the appropriate Python module that
implements these.

The shared memory model
In this model the tasks share a single shared memory area, where the access (reading and
writing data) to shared resources is asynchronous. There are mechanisms that allow the
programmer to control the access to the shared memory, for example, locks or semaphores.
This model offers the advantage that the programmer does not have to clarify the
communication between tasks. An important disadvantage in terms of performance is that
it becomes more difficult to understand and manage data locality; keeping data local to the
processor that works on it conserves memory accesses, cache refreshes, and bus traffic that
occur when multiple processors use the same data.

Chapter 1

15

The multithread model
In this model, a process can have multiple flows of execution, for example, a sequential
part is created and subsequently, a series of tasks are created that can be executed
parallelly. Usually, this type of model is used on shared memory architectures. So, it will be
very important for us to manage the synchronization between threads, as they operate on
shared memory, and the programmer must prevent multiple threads from updating the same
locations at the same time. The current generation CPUs are multithreaded in software and
hardware. Posix threads are the classic example of the implementation of multithreading
on software. The Intel Hyper-threading technology implements multithreading on hardware
by switching between two threads when one is stalled or waiting on I/O. Parallelism can be
achieved from this model even if the data alignment is nonlinear.

The message passing model
The message passing model is usually applied in the case where each processor has its own
memory (distributed memory systems). More tasks can reside on the same physical machine
or on an arbitrary number of machines. The programmer is responsible for determining the
parallelism and data exchange that occurs through the messages. The implementation of
this parallel programming model requires the use of (ad hoc) software libraries to be used
within the code. Numerous implementations of message passing model were created: some
of the examples are available since the 1980s, but only from the mid-90s, was created
to standardized model, coming to a de facto standard called MPI (the message passing
interface). The MPI model is designed clearly with distributed memory, but being models of
parallel programming, multiplatform can also be used with a shared memory machine.

Machine A Machine B

task 1

task 2

data

data

send() send()

receive() receive()

NETWORK task 3

data

task 0

data

The message passing paradigm model

Getting Started with Parallel Computing and Python

16

The data parallel model
In this model, we have more tasks that operate on the same data structure, but each task
operates on a different portion of data. In the shared memory architecture, all tasks have
access to data through shared memory and distributed memory architectures, where the data
structure is divided and resides in the local memory of each task. To implement this model,
a programmer must develop a program that specifies the distribution and alignment of data.
The current generation GPUs operates high throughout with the data aligned.

array A

Task 1 Task 2 Task 3

...
do i=1,25
A(i)=B(i)*delta
end do

...
do i=26,50
A(i)=B(i)*delta
end do

...
do i=51,100
A(i)=B(i)*delta
end do

The data parallel paradigm model

How to design a parallel program
The design of algorithms that exploit parallelism is based on a series of operations, which
must necessarily be carried out for the program to perform the job correctly without producing
partial or erroneous results. The macro operations that must be carried out for a correct
parallelization of an algorithm are:

ff Task decomposition

ff Task assignment

ff Agglomeration

ff Mapping

Chapter 1

17

Task decomposition
In this first phase, the software program is split into tasks or a set of instructions that can
then be executed on different processors to implement parallelism. To do this subdivision,
there are two methods that are used:

ff Domain decomposition: Here, the data of the problems is decomposed; the
application is common to all the processors that work on a different portion of
data. This methodology is used when we have a large amount of data that must be
processed.

ff Functional decomposition: In this case, the problem is split into tasks, where each
task will perform a particular operation on all the available data.

Task assignment
In this step, the mechanism by which the task will be distributed among the various processes
is specified. This phase is very important because it establishes the distribution of workload
among the various processors. The load balance is crucial here; in fact, all processors must
work with continuity, avoiding an idle state for a long time. To perform this, the programmer
takes into account the possible heterogeneity of the system that tries to assign more tasks to
better performing processors. Finally, for greater efficiency of parallelization, it is necessary to
limit communication as much as possible between processors, as they are often the source of
slowdowns and consumption of resources.

Agglomeration
Agglomeration is the process of combining smaller tasks with larger ones in order to improve
performance. If the previous two stages of the design process partitioned the problem into a
number of tasks that greatly exceed the number of processors available, and if the computer
is not specifically designed to handle a huge number of small tasks (some architectures, such
as GPUs, handle this fine and indeed benefit from running millions or even billions of tasks),
then the design can turn out to be highly inefficient. Commonly, this is because tasks have
to be communicated to the processor or thread so that they compute the said task. Most
communication has costs that are not only proportional with the amount of data transferred,
but also incur a fixed cost for every communication operation (such as the latency which is
inherent in setting up a TCP connection). If the tasks are too small, this fixed cost can easily
make the design inefficient.

Getting Started with Parallel Computing and Python

18

Mapping
In the mapping stage of the parallel algorithm design process, we specify where each task is
to be executed. The goal is to minimize the total execution time. Here, you must often make
tradeoffs, as the two main strategies often conflict with each other:

ff The tasks that communicate frequently should be placed in the same processor to
increase locality

ff The tasks that can be executed concurrently should be placed in different processors
to enhance concurrency

This is known as the mapping problem, and it is known to be NP-complete. As such, no
polynomial time solutions to the problem in the general case exist. For tasks of equal size
and tasks with easily identified communication patterns, the mapping is straightforward (we
can also perform agglomeration here to combine tasks that map to the same processor.)
However, if the tasks have communication patterns that are hard to predict or the amount
of work varies per task, it is hard to design an efficient mapping and agglomeration scheme.
For these types of problems, load balancing algorithms can be used to identify agglomeration
and mapping strategies during runtime. The hardest problems are those in which the amount
of communication or the number of tasks changes during the execution of the program.
For these kind of problems, dynamic load balancing algorithms can be used, which run
periodically during the execution.

Dynamic mapping
There exists many load balancing algorithms for various problems, both global and local.
Global algorithms require global knowledge of the computation being performed, which
often adds a lot of overhead. Local algorithms rely only on information that is local to the
task in question, which reduces overhead compared to global algorithms, but are usually
worse at finding an optimal agglomeration and mapping. However, the reduced overhead
may reduce the execution time even though the mapping is worse by itself. If the tasks rarely
communicate other than at the start and end of the execution, a task-scheduling algorithm
is often used that simply maps tasks to processors as they become idle. In a task-scheduling
algorithm, a task pool is maintained. Tasks are placed in this pool and are taken from it by
workers.

There are three common approaches in this model, which are explained next.

Manager/worker
This is the basic dynamic mapping scheme in which all the workers connect to a the
centralized manager. The manager repeatedly sends tasks to the workers and collects the
results. This strategy is probably the best for a relatively small number of processors. The
basic strategy can be improved by fetching tasks in advance so that communication and
computation overlap each other.

Chapter 1

19

Hierarchical manager/worker
This is the variant of a manager/worker that has a semi-distributed layout; workers are split
into groups, each with their own manager. These group managers communicate with the
central manager (and possibly, among themselves as well), while workers request tasks
from the group managers. This spreads the load among several managers and can, as such,
handle a larger amount of processors if all workers request tasks from the same manager.

Decentralize
In this scheme, everything is decentralized. Each processor maintains its own task pool and
communicates with the other processors in order to request tasks. How the processors choose
other processors to request tasks varies and is determined on the basis of the problem.

How to evaluate the performance of a
parallel program

The development of parallel programming created the need of performance metrics and a
software tool to evaluate the performance of a parallel algorithm in order to decide whether
its use is convenient or not. Indeed, the focus of parallel computing is to solve large problems
in a relatively short time. The factors that contribute to the achievement of this objective
are, for example, the type of hardware used, the degree of parallelism of the problem, and
which parallel programming model is adopted. To facilitate this, analysis of basic concepts
was introduced, which compares the parallel algorithm obtained from the original sequence.
The performance is achieved by analyzing and quantifying the number of threads and/or the
number of processes used.

To analyze this, a few performance indexes are introduced: speedup, efficiency, and scaling.

The limitations of a parallel computation are introduced by the Ahmdal's law to evaluate
the degree of the efficiency of parallelization of a sequential algorithm we have the
Gustafson's law.

Speedup
Speedup is the measure that displays the benefit of solving a problem in parallel. It is defined
as the ratio of the time taken to solve a problem on a single processing element, TS, to the
time required to solve the same problem on p identical processing elements, Tp.

We denote speedup by
S

P

TS
T

=
. We have a linear speedup, where if S=p, it means that the

speed of execution increases with the number of processors. Of course, this is an ideal case.
While the speedup is absolute when Ts is the execution time of the best sequential algorithm,
the speedup is relative when Ts is the execution time of the parallel algorithm for a single
processor.

Getting Started with Parallel Computing and Python

20

Let's recap these conditions:

ff S = p is linear or ideal speedup

ff S < p is real speedup

ff S > p is superlinear speedup

Efficiency
In an ideal world, a parallel system with p processing elements can give us a speedup equal
to p. However, this is very rarely achieved. Usually, some time is wasted in either idling or
communicating. Efficiency is a performance metric estimating how well-utilized the processors
are in solving a task, compared to how much effort is wasted in communication and
synchronization.

We denote it by E and can define it as
S

P

TSE
p pT

= =
. The algorithms with linear speedup have

the value of E = 1; in other cases, the value of E is less than 1. The three cases are identified
as follows:

ff When E = 1, it is a linear case

ff When E < 1, it is a real case

ff When E<< 1, it is a problem that is parallelizable with low efficiency

Scaling
Scaling is defined as the ability to be efficient on a parallel machine. It identifies the
computing power (speed of execution) in proportion with the number of processors. By
increasing the size of the problem and at the same time the number of processors, there will
be no loss in terms of performance. The scalable system, depending on the increments of the
different factors, may maintain the same efficiency or improve it.

Amdahl's law
Amdahl's law is a widely used law used to design processors and parallel algorithms. It states
that the maximum speedup that can be achieved is limited by the serial component of the

program:
1
1

S
P

=
− , where 1 – P denotes the serial component (not parallelized) of a program.

This means that for, as an example, a program in which 90 percent of the code can be made
parallel, but 10 percent must remain serial, the maximum achievable speedup is 9 even for
an infinite number of processors.

Chapter 1

21

Gustafson's law
Gustafson's law is based on the following considerations:

ff While increasing the dimension of a problem, its sequential parts remain constant

ff While increasing the number of processors, the work required on each of them still
remains the same

This states that S(P) = P – α (P – 1), where P is the number of processors, S is the speedup,
and α is the non-parallelizable fraction of any parallel process. This is in contrast to Amdahl's
law, which takes the single-process execution time to be the fixed quantity and compares
it to a shrinking per process parallel execution time. Thus, Amdahl's law is based on the
assumption of a fixed problem size; it assumes that the overall workload of a program does
not change with respect to the machine size (that is, the number of processors). Gustafson's
law addresses the deficiency of Amdahl's law, which does not take into account the total
number of computing resources involved in solving a task. It suggests that the best way to
set the time allowed for the solution of a parallel problem is to consider all the computing
resources and on the basis of this information, it fixes the problem.

Introducing Python
Python is a powerful, dynamic, and interpreted programming language that is used in a wide
variety of applications. Some of its features include:

ff A clear and readable syntax

ff A very extensive standard library, where through additional software modules, we can
add data types, functions, and objects

ff Easy-to-learn rapid development and debugging; the development of Python code in
Python can be up to 10 times faster than the C/C++ code

ff Exception-based error handling

ff A strong introspection functionality

ff Richness of documentation and software community

Python can be seen as a glue language. Using Python, better applications can be developed
because different kinds of programmers can work together on a project. For example, when
building a scientific application, C/C++ programmers can implement efficient numerical
algorithms, while scientists on the same project can write Python programs that test and use
those algorithms. Scientists don't have to learn a low-level programming language and a C/
C++ programmer doesn't need to understand the science involved.

Getting Started with Parallel Computing and Python

22

You can read more about this from https://www.python.org/doc/
essays/omg-darpa-mcc-position.

Getting ready
Python can be downloaded from https://www.python.org/downloads/.

Although you can create Python programs with Notepad or TextEdit, you'll notice that it's much
easier to read and write code using an Integrated Development Environment (IDE).

There are many IDEs that are designated specifically for Python, including IDLE (http://
www.python.org/idle), PyCharm (https://www.jetbrains.com/pycharm/), and
Sublime Text, (http://www.sublimetext.com/).

How to do it…
Let's take a look at some examples of the very basic code to get an idea of the features of
Python. Remember that the symbol >>> denotes the Python shell:

ff Operations with integers:

>>> # This is a comment

>>> width = 20

>>> height = 5*9

>>> width * height

900

Only for this first example, we will see how the code appears in the Python shell:

https://www.python.org/doc/essays/omg-darpa-mcc-position
https://www.python.org/doc/essays/omg-darpa-mcc-position
https://www.python.org/downloads/
http://www.python.org/idle
http://www.python.org/idle
https://www.jetbrains.com/pycharm/
http://www.sublimetext.com/

Chapter 1

23

Let's see the other basic examples:

ff Complex numbers:
>>> a=1.5+0.5j

>>> a.real

1.5

>>> a.imag

0.5

>>> abs(a) # sqrt(a.real**2 + a.imag**2)

5.0

ff Strings manipulation:
>>> word = 'Help' + 'A'

>>> word

'HelpA'

>>> word[4]

'A'

>>> word[0:2]

'He'

>>> word[-1] # The last character

'A'

ff Defining lists:
>>> a = ['spam', 'eggs', 100, 1234]

>>> a[0]

'spam'

>>> a[3]

1234

>>> a[-2]

100

>>> a[1:-1]

['eggs', 100]

>>> len(a)

4

Getting Started with Parallel Computing and Python

24

ff The while loop:
Fibonacci series:

>>> while b < 10:

... print b

... a, b = b, a+b

...

1

1

2

3

5

8

ff The if command:

First we use the input() statement to insert an integer:
>>>x = int(input("Please enter an integer here: "))

Please enter an integer here:

Then we implement the if condition on the number inserted:

>>>if x < 0:

... print ('the number is negative')

...elif x == 0:

... print ('the number is zero')

...elif x == 1:

... print ('the number is one')

...else:

... print ('More')

...

ff The for loop:
>>> # Measure some strings:

... a = ['cat', 'window', 'defenestrate']

>>> for x in a:

... print (x, len(x))

...

cat 3

window 6

defenestrate 12

Chapter 1

25

ff Defining functions:
>>> def fib(n): # write Fibonacci series up to n

... """Print a Fibonacci series up to n."""

... a, b = 0, 1

... while b < n:

... print (b),

... a, b = b, a+b

...

>>> # Now call the function we just defined:

... fib(2000)

1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597

ff Importing modules:
>>> import math

>>> math.sin(1)

0.8414709848078965

>>> from math import *

>>> log(1)

0.0

ff Defining classes:

>>> class Complex:

... def __init__(self, realpart, imagpart):

... self.r = realpart

... self.i = imagpart

...

>>> x = Complex(3.0, -4.5)

>>> x.r, x.i

(3.0, -4.5)

Getting Started with Parallel Computing and Python

26

Python in a parallel world
To be an interpreted language, Python is fast, and if speed is critical, it easily interfaces with
extensions written in faster languages, such as C or C++. A common way of using Python is to
use it for the high-level logic of a program; the Python interpreter is written in C and is known
as CPython. The interpreter translates the Python code in an intermediate language called
Python bytecode, which is analogous to an assembly language, but contains a high level of
instruction. While a Python program runs, the so-called evaluation loop translates Python
bytecode into machine-specific operations. The use of interpreter has advantages in code
programming and debugging, but the speed of a program could be a problem. A first solution
is provided by third-party packages, where a programmer writes a C module and then imports
it from Python. Another solution is the use of a Just-in-Time Python compiler, which is an
alternative to CPython, for example, the PyPy implementation optimizes code generation and
the speed of a Python program. In this book, we will examine a third approach to the problem;
in fact, Python provides ad hoc modules that could benefit from parallelism. The description of
many of these modules, in which the parallel programming paradigm falls, will be discussed in
subsequent chapters.

However, in this chapter, we will introduce the two fundamental concepts of threads and
processes and how they are addressed in the Python programming language.

Introducing processes and threads
A process is an executing instance of an application, for example, double-clicking on the
Internet browser icon on the desktop will start a process than runs the browser. A thread is
an active flow of control that can be activated in parallel with other threads within the same
process. The term "flow control" means a sequential execution of machine instructions. Also,
a process can contain multiple threads, so starting the browser, the operating system creates
a process and begins executing the primary threads of that process. Each thread can execute
a set of instructions (typically, a function) independently and in parallel with other processes
or threads. However, being the different active threads within the same process, they share
space addressing and then the data structures. A thread is sometimes called a lightweight
process because it shares many characteristics of a process, in particular, the characteristics
of being a sequential flow of control that is executed in parallel with other control flows that
are sequential. The term "light" is intended to indicate that the implementation of a thread is
less onerous than that of a real process. However, unlike the processes, multiple threads may
share many resources, in particular, space addressing and then the data structures.

Chapter 1

27

Let's recap:

ff A process can consist of multiple parallel threads.

ff Normally, the creation and management of a thread by the operating system is
less expensive in terms of CPU's resources than the creation and management of
a process. Threads are used for small tasks, whereas processes are used for more
heavyweight tasks—basically, the execution of applications.

ff The threads of the same process share the address space and other resources, while
processes are independent of each other.

Before examining in detail the features and functionality of Python modules for the
management of parallelism via threads and processes, let's first look at how the Python
programming language works with these two entities.

Start working with processes in Python
On common operating systems, each program runs in its own process. Usually, we start a
program by double-clicking on the icon's program or selecting it from a menu. In this recipe,
we simply demonstrate how to start a single new program from inside a Python program.
A process has its own space address, data stack, and other auxiliary data to keep track of
the execution; the OS manages the execution of all processes, managing the access to the
computational resources of the system via a scheduling procedure.

Getting ready
In this first Python application, you'll simply get the Python language installed.

Refer to https://www.python.org/ to get the latest version of Python.

How to do it…
To execute this first example, we need to type the following two programs:

ff called_Process.py

ff calling_Process.py

https://www.python.org/

Getting Started with Parallel Computing and Python

28

You can use the Python IDE (3.3.0) to edit these files:

The code for the called_Process.py file is as shown:

print ("Hello Python Parallel Cookbook!!")

closeInput = raw_input("Press ENTER to exit")

print "Closing calledProcess"

The code for the calling_Process.py file is as shown:

##The following modules must be imported

import os

import sys

##this is the code to execute

program = "python"

print("Process calling")

arguments = ["called_Process.py"]

##we call the called_Process.py script

os.execvp(program, (program,) + tuple(arguments))

print("Good Bye!!")

To run the example, open the calling_Process.py program with the Python IDE and then
press the F5 button on the keyboard.

You will see the following output in the Python shell:

Chapter 1

29

At same time, the OS prompt displays the following:

We have two processes running to close the OS prompt; simply press the Enter button on the
keyboard to do so.

How it works…
In the preceding example, the execvp function starts a new process, replacing the current
one. Note that the "Good Bye" message is never printed. Instead, it searches for the program
called_Process.py along the standard path, passes the contents of the second argument
tuple as individual arguments to that program, and runs it with the current set of environment
variables. The instruction input() in called_Process.py is only used to manage the
closure of OS prompt. In the recipe dedicated to process-based parallelism, we will finally see
how to manage a parallel execution of more processes via the multiprocessing Python module.

Start working with threads in Python
As mentioned briefly in the previous section, thread-based parallelism is the standard way
of writing parallel programs. However, the Python interpreter is not fully thread-safe. In order
to support multithreaded Python programs, a global lock called the Global Interpreter Lock
(GIL) is used. This means that only one thread can execute the Python code at the same time;
Python automatically switches to the next thread after a short period of time or when a thread
does something that may take a while. The GIL is not enough to avoid problems in your own
programs. Although, if multiple threads attempt to access the same data object, it may end up
in an inconsistent state.

In this recipe, we simply show you how to create a single thread inside a Python program.

Getting Started with Parallel Computing and Python

30

How to do it…
To execute this first example, we need the program helloPythonWithThreads.py:

To use threads you need import Thread using the following code:

from threading import Thread

##Also we use the sleep function to make the thread "sleep"

from time import sleep

To create a thread in Python you'll want to make your class work as a
thread.

For this, you should subclass your class from the Thread class

class CookBook(Thread):

 def __init__(self):

 Thread.__init__(self)

 self.message = "Hello Parallel Python CookBook!!\n"

##this method prints only the message

 def print_message(self):

 print (self.message)

##The run method prints ten times the message

 def run(self):

 print ("Thread Starting\n")

 x=0

 while (x < 10):

 self.print_message()

 sleep(2)

 x += 1

 print ("Thread Ended\n")

#start the main process

print ("Process Started")

Chapter 1

31

create an instance of the HelloWorld class

hello_Python = CookBook()

print the message...starting the thread

hello_Python.start()

#end the main process

print ("Process Ended")

To run the example, open the calling_Process.py program with the Python IDE and then
press the F5 button on the keyboard.

You will see the following output in the Python shell:

Getting Started with Parallel Computing and Python

32

How it works…
While the main program has reached the end, the thread continues printing its message every
two seconds. This example demonstrates what threads are—a subtask doing something in a
parent process.

A key point to make when using threads is that you must always make sure that you never
leave any thread running in the background. This is very bad programming and can cause you
all sorts of pain when you work on bigger applications.

33

2
Thread-based

Parallelism

In this chapter, we will cover the following recipes:

ff How to use the Python threading module

ff How to define a thread

ff How to determine the current thread

ff How to use a thread in a subclass

ff Thread synchronization with Lock and RLock

ff Thread synchronization with semaphores

ff Thread synchronization with a condition

ff Thread synchronization with an event

ff How to use the with statement

ff Thread communication using a queue

ff Evaluating the performance of multithread applications

ff The criticality of multithreaded programming

Thread-based Parallelism

34

Introduction
Currently, the most widely used programming paradigm for the management of concurrence
in software applications is based on multithreading. Generally, an application is made by a
single process that is divided into multiple independent threads, which represent activities
of different types that run parallel and compete with each other.

Although such a style of programming can lead to disadvantages of use and problems
that need to be solved, modern applications with the mechanism of multithreading are
still used quite widely.

Practically, all the existing operating systems support multithreading, and in almost all
programming languages, there are mechanisms that you can use to implement concurrent
applications through the use of threads.

Therefore, multithreaded programming is definitely a good choice to achieve concurrent
applications. However, it is not the only choice available—there are several other alternatives,
some of which, inter alia, perform better on the definition of thread.

A thread is an independent execution flow that can be executed parallelly and concurrently
with other threads in the system. Multiple threads can share data and resources, taking
advantage of the so-called space of shared information. The specific implementation of
threads and processes depends on the operating system on which you plan to run the
application, but, in general, it can be stated that a thread is contained inside a process and
that different threads in the same process conditions share some resources. In contrast to
this, different processes do not share their own resources with other processes.

Each thread appears to be mainly composed of three elements: program counter, registers,
and stack. Shared resources with other threads of the same process essentially include
data and operating system resources. Similar to what happens to the processes, even the
threads have their own state of execution and can synchronize with each other. The states of
execution of a thread are generally called ready, running, and blocked. A typical application of
a thread is certainly parallelization of an application software, especially, to take advantage
of modern multi-core processors, where each core can run a single thread. The advantage
of threads over the use of processes lies in the performance, as the context switch between
processes turns out to be much heavier than the switch context between threads that belong
to the same process.

Multithreaded programming prefers a communication method between threads using the
space of shared information. This choice requires that the major problem that is to be
addressed by programming with threads is related to the management of that space.

Chapter 2

35

Using the Python threading module
Python manages a thread via the threading package that is provided by the Python
standard library. This module provides some very interesting features that make the
threading-based approach a whole lot easier; in fact, the threading module provides several
synchronization mechanisms that are very simple to implement.

The major components of the threading module are:

ff The thread object

ff The Lock object

ff The RLock object

ff The semaphore object

ff The condition object

ff The event object

In the following recipes, we examine the features offered by the threading library with different
application examples. For the examples that follow, we will refer to the Python distribution 3.3
(even though Python 2.7 could be used).

How to define a thread
The simplest way to use a thread is to instantiate it with a target function and then call the
start() method to let it begin its work. The Python module threading has the Thread()
method that is used to run processes and functions in a different thread:

class threading.Thread(group=None,
 target=None,
 name=None,
 args=(),
 kwargs={})

In the preceding code:

ff group: This is the value of group that should be None; this is reserved for future
implementations

ff target: This is the function that is to be executed when you start a thread activity

ff name: This is the name of the thread; by default, a unique name of the form
Thread-N is assigned to it

Thread-based Parallelism

36

ff args: This is the tuple of arguments that are to be passed to a target

ff kwargs: This is the dictionary of keyword arguments that are to be used for the
target function

It is useful to spawn a thread and pass arguments to it that tell it what work to do. This
example passes a number, which is the thread number, and then prints out the result.

How to do it…
Let's see how to define a thread with the threading module, for this, a few lines of code are
necessary:

import threading

def function(i):
 print ("function called by thread %i\n" %i)
 return

threads = []
for i in range(5):
 t = threading.Thread(target=function , args=(i,))
 threads.append(t)
 t.start()
 t.join()

The output of the preceding code should be, as follows:

We should also point out that the output could be achieved in a different manner; in fact,
multiple threads might print the result back to stdout at the same time, so the output order
cannot be predetermined.

Chapter 2

37

How it works…
To import the threading module, we simply use the Python command:

import threading

In the main program, we instantiate a thread, using the Thread object with a target function
called function. Also, we pass an argument to the function that will be included in the
output message:

t = threading.Thread(target=function , args=(i,))

The thread does not start running until the start() method is called, and that join()
makes the calling thread wait until the thread has finished the execution:

t.start()
t.join()

How to determine the current thread
Using arguments to identify or name the thread is cumbersome and unnecessary. Each
Thread instance has a name with a default value that can be changed as the thread is
created. Naming threads is useful in server processes with multiple service threads that
handle different operations.

How to do it…
To determine which thread is running, we create three target functions and import the
time module to introduce a suspend execution of two seconds:

import threading
import time

def first_function():
 print (threading.currentThread().getName()+\
 str(' is Starting \n'))
 time.sleep(2)
 print (threading.currentThread().getName()+\
 str(' is Exiting \n'))
 return

def second_function():
 print (threading.currentThread().getName()+\
 str(' is Starting \n'))
 time.sleep(2)

Thread-based Parallelism

38

 print (threading.currentThread().getName()+\
 str(' is Exiting \n'))
 return

def third_function():
 print (threading.currentThread().getName()+\
 str(' is Starting \n'))
 time.sleep(2)
 print (threading.currentThread().getName()+\
 str(' is Exiting \n'))
 return

if __name__ == "__main__":

 t1 = threading.Thread\
 (name='first_function', target=first_function)
 t2 = threading.Thread\
 (name='second_function', target=second_function)
 t3 = threading.Thread\
 (name='third_function',target=third_function)

 t1.start()
 t2.start()
 t3.start()

The output of this should be, as follows:

Chapter 2

39

How it works…
We instantiate a thread with a target function. Also, we pass the name that is to be printed
and if it is not defined, the default name will be used:

t1 = threading.Thread(name='first_function', target=first_function)
t2 = threading.Thread(name='second_function', target=second_function)
t3 = threading.Thread(target=third_function)

Then, we call the start() and join() methods on them:

t1.start()
t2.start()
t3.start()
t1.join()
t2.join()
t3.join()

How to use a thread in a subclass
To implement a new thread using the threading module, you have to do the following:

ff Define a new subclass of the Thread class

ff Override the _init__(self [,args]) method to add additional arguments

ff Then, you need to override the run(self [,args]) method to implement what
the thread should do when it is started

Once you have created the new Thread subclass, you can create an instance of it and then
start a new thread by invoking the start() method, which will, in turn, call the run() method.

How to do it…
To implement a thread in a subclass, we define the myThread class. It has two methods that
must be overridden with the thread's arguments:

import threading
import time

exitFlag = 0

class myThread (threading.Thread):
 def __init__(self, threadID, name, counter):
 threading.Thread.__init__(self)
 self.threadID = threadID

Thread-based Parallelism

40

 self.name = name
 self.counter = counter
 def run(self):
 print ("Starting " + self.name)
 print_time(self.name, self.counter, 5)
 print ("Exiting " + self.name)

def print_time(threadName, delay, counter):
 while counter:
 if exitFlag:
 thread.exit()
 time.sleep(delay)
 print ("%s: %s" %\
 (threadName, time.ctime(time.time())))
 counter -= 1

Create new threads
thread1 = myThread(1, "Thread-1", 1)
thread2 = myThread(2, "Thread-2", 2)

Start new Threads
thread1.start()
thread2.start()
print ("Exiting Main Thread")

When the previous code is executed, it produces the following result:

Chapter 2

41

How it works…
The threading module is the preferred form for creating and managing threads. Each thread is
represented by a class that extends the Thread class and overrides its run() method. Then,
this method becomes the starting point of the thread. In the main program, we create several
objects of the myThread type; the execution of the thread begins when the start() method
is called. Calling the constructor of the Thread class is mandatory—using it, we can redefine
some properties of the thread as the name or group of the thread. The thread is placed in the
active state of the call to start() and remains there until it ends the run() method or you
throw an unhandled exception to it. The program ends when all the threads are terminated.

The join()command just handles the termination of threads.

Thread synchronization with Lock and
RLock

When two or more operations belonging to concurrent threads try to access the shared
memory and at least one of them has the power to change the status of the data without
a proper synchronization mechanism a race condition can occur and it can produce invalid
code execution and bugs and unexpected behavior. The easiest way to get around the race
conditions is the use of a lock. The operation of a lock is simple; when a thread wants to
access a portion of shared memory, it must necessarily acquire a lock on that portion prior
to using it. In addition to this, after completing its operation, the thread must release the lock
that was previously obtained so that a portion of the shared memory is available for any other
threads that want to use it. In this way, it is evident that the impossibility of incurring races
is critical as the need of the lock for the thread requires that at a given instant, only a given
thread can use this part of the shared memory. Despite their simplicity, the use of a lock
works. However, in practice, we can see how this approach can often lead the execution to a
bad situation of deadlock. A deadlock occurs due to the acquisition of a lock from different
threads; it is impossible to proceed with the execution of operations since the various locks
between them block access to the resources.

Thread A

wait

set

Thread B

set

wait

Thread B waits
for variable 2
to be set by
Thread A

Thread A can't
set variable 1

Thread A waits
for variable 1
to be set by
Thread B

Thread A can't
set variable 2

Shared Variables

1

2

Deadlock

Thread-based Parallelism

42

For the sake of simplicity, let's think of a situation wherein there are two concurrent threads
(Thread A and Thread B) who have at their disposal resources 1 and 2. Suppose Thread A
requires resource 1 and Thread B requires resource 2. In this case, both threads require
their own lock and up to this point, everything proceeds smoothly. Imagine, however, that
subsequently, before releasing the lock, Thread A requires a lock on resource 2 and Thread
B requires a lock on resource 1, which is now necessary for both the processes. Since both
resources are locked, the two threads are blocked and waiting each other until the occupied
resource is released. This situation is the most emblematic example of the occurrence of a
deadlock situation. As said, therefore, showing the use of locks to ensure synchronization so
that you can access the shared memory on one hand is a working solution, but, on the other
hand, it is potentially destructive in certain cases.

In this recipe, we describe the Python threading synchronization mechanism called lock().
It allows us to restrict the access of a shared resource to a single thread or a single type
of thread at a time. Before accessing the shared resource of the program, the thread must
acquire the lock and must then allow any other threads access to the same resource.

How to do it…
The following example demonstrates how you can manage a thread through the mechanism
of lock(). In this code, we have two functions: increment() and decrement(),
respectively. The first function increments the value of the shared resource, while the second
function decrements the value, where each function is inserted in a suitable thread. In
addition to this, each function has a loop in which the increase or decrease is repeated. We
want to make sure, through the proper management of the shared resources, that the result
of the execution is equal to the value of the shared variable that is initialized to zero.

The sample code is shown, as follows, where each feature within the sample code is properly
commented:

import threading

shared_resource_with_lock = 0
shared_resource_with_no_lock = 0
COUNT = 100000
shared_resource_lock = threading.Lock()

####LOCK MANAGEMENT##
def increment_with_lock():
 global shared_resource_with_lock
 for i in range(COUNT):

Chapter 2

43

 shared_resource_lock.acquire()
 shared_resource_with_lock += 1
 shared_resource_lock.release()

def decrement_with_lock():
 global shared_resource_with_lock
 for i in range(COUNT):
 shared_resource_lock.acquire()
 shared_resource_with_lock -= 1
 shared_resource_lock.release()

####NO LOCK MANAGEMENT ##
def increment_without_lock():
 global shared_resource_with_no_lock
 for i in range(COUNT):
 shared_resource_with_no_lock += 1

def decrement_without_lock():
 global shared_resource_with_no_lock
 for i in range(COUNT):
 shared_resource_with_no_lock -= 1

####the Main program
if __name__ == "__main__":
 t1 = threading.Thread(target = increment_with_lock)
 t2 = threading.Thread(target = decrement_with_lock)
 t3 = threading.Thread(target = increment_without_lock)
 t4 = threading.Thread(target = decrement_without_lock)
 t1.start()
 t2.start()
 t3.start()
 t4.start()
 t1.join()
 t2.join()
 t3.join()
 t4.join()
 print ("the value of shared variable with lock management is %s"\
 %shared_resource_with_lock)
 print ("the value of shared variable with race condition is %s"\
 %shared_resource_with_no_lock)

Thread-based Parallelism

44

This is the result that you get after a single run:

As you can see, we have the correct result with the appropriate management and lock
instructions. Note again that the result for the shared variable without lock management
could differ from the result shown.

How it works…
In the main method, we have the following procedures:

t1 = threading.Thread(target = increment_with_lock)

t2 = threading.Thread(target = decrement_with_lock)

For thread starting, use:

t1.start()
t2.start()

For thread joining, use:

t1.join()
t2.join()

In the increment_with_lock() and decrement_with_lock()functions, you can see how
to use lock management. When you need to access the resource, call acquire() to hold the
lock (this will wait for the lock to be released, if necessary) and call release() to release it:

shared_resource_lock.acquire()
shared_resource_with_lock -= 1
shared_resource_lock.release()

Chapter 2

45

Let's recap:

ff Locks have two states: locked and unlocked

ff We have two methods that are used to manipulate the locks: acquire() and
release()

The following are the rules:

ff If the state is unlocked, a call to acquire() changes the state to locked

ff If the state is locked, a call to acquire() blocks until another thread calls release()

ff If the state is unlocked, a call to release() raises a RuntimeError exception

ff If the state is locked, a call to release() changes the state to unlocked

There's more…
Despite their theoretical smooth running, the locks are not only subject to harmful situations
of deadlock, but also have many other negative aspects for the application as a whole. This is
a conservative approach which, by its nature, often introduces unnecessary overhead; it also
limits the scalability of the code and its readability. Furthermore, the use of a lock is decidedly
in conflict with the possible need to impose the priority of access to the memory shared by
the various processes. Finally, from a practical point of view, an application containing a lock
presents considerable difficulties when searching for errors (debugging). In conclusion, it
would be appropriate to use alternative methods to ensure synchronized access to shared
memory and avoid race conditions.

Thread synchronization with RLock
If we want only the thread that acquires a lock to release it, we must use a RLock() object.
Similar to the Lock() object, the RLock() object has two methods: acquire() and
release(). RLock() is useful when you want to have a thread-safe access from outside the
class and use the same methods from inside the class.

How to do it…
In the sample code, we introduced the Box class, which has the methods add() and
remove(), respectively, that provide us access to the execute() method so that we can
perform the action of adding or deleting an item, respectively. Access to the execute()
method is regulated by RLock():

import threading
import time

Thread-based Parallelism

46

class Box(object):
 lock = threading.RLock()
 def __init__(self):
 self.total_items = 0
 def execute(self,n):
 Box.lock.acquire()
 self.total_items += n
 Box.lock.release()
 def add(self):
 Box.lock.acquire()
 self.execute(1)
 Box.lock.release()
 def remove(self):
 Box.lock.acquire()
 self.execute(-1)
 Box.lock.release()

These two functions run n in separate
threads and call the Box's methods

def adder(box,items):
 while items > 0:
 print ("adding 1 item in the box\n")
 box.add()
 time.sleep(5)
 items -= 1

def remover(box,items):
 while items > 0:
 print ("removing 1 item in the box")
 box.remove()
 time.sleep(5)
 items -= 1

the main program build some
threads and make sure it works
if __name__ == "__main__":
 items = 5
 print ("putting %s items in the box " % items)
 box = Box()
 t1 = threading.Thread(target=adder,args=(box,items))
 t2 = threading.Thread(target=remover,args=(box,items))
 t1.start()
 t2.start()

Chapter 2

47

 t1.join()
 t2.join()
 print ("%s items still remain in the box " % box.total_items)

How it works…
In the main program, we repeated what was written in the preceding example; the two threads
t1 and t2 are with the associated functions adder() and remover(). The functions are
active when the number of items is greater than zero. The call to RLock() is carried out
inside the Box class:

class Box(object):
 lock = threading.RLock()

The two functions adder() and remover()interact with the items of the Box class,
respectively, and call the Box class methods: add() and remove(). In each method call,
a resource is captured and then released. As for the object lock(), RLock() owns the
acquire() and release() methods to acquire and release the resource; then for each
method, we have the following function calls:

 Box.lock.acquire()
 #...do something
 Box.lock.release()

The execution result of the RLock() object's example

Thread-based Parallelism

48

Thread synchronization with semaphores
Invented by E. Dijkstra and used for the first time in the operating system, a semaphore is
an abstract data type managed by the operating system, used to synchronize the access by
multiple threads to shared resources and data. Essentially, a semaphore is constituted of an
internal variable that identifies the number of concurrent access to a resource to which it is
associated.

Also, in the threading module, the operation of a semaphore is based on the two functions
acquire() and release(), as explained:

ff Whenever a thread wants to access a resource that is associated with a semaphore,
it must invoke the acquire() operation, which decreases the internal variable of
the semaphore and allows access to the resource if the value of this variable appears
to be non-negative. If the value is negative, the thread would be suspended and the
release of the resource by another thread will be placed on hold.

ff Whenever a thread has finished using the data or shared resource, it must release
the resource through the release() operation. In this way, the internal variable
of the semaphore is incremented, and the first waiting thread in the semaphore's
queue will have access to the shared resource.

Thread Thread
release
acquire

release
acquire

SEMAPHORE

SHARED
RESOURCE

Thread synchronization with semaphores

Although at first glance the mechanism of semaphores does not present obvious problems,
it works properly only if the wait and signal operations are performed in atomic blocks. If not,
or if one of the two operations is stopped, this could arise unpleasant situations.

Suppose that two threads execute simultaneously, the operation waits on a semaphore,
whose internal variable has the value 1. Also assume that after the first thread has
the semaphore decremented from 1 to 0, the control goes to the second thread, which
decrements the light from 0 to -1 and waits as the negative value of the internal variable.
At this point, with the control that returns to the first thread, the semaphore has a negative
value and therefore, the first thread also waits.

Therefore, despite the semaphore having access to a thread, the fact that the wait operation
was not performed in atomic terms has led to a solution of the stall.

Chapter 2

49

Getting ready
The next code describes the problem, where we have two threads, producer() and
consumer() that share a common resource, which is the item. The task of producer() is
to generate the item while the consumer() thread's task is to use the item produced.

If the item has not yet produced the consumer() thread, it has to wait. As soon as the item is
produced, the producer() thread notifies the consumer that the resource should be used.

How to do it…
In the following example, we use the consumer-producer model to show you the
synchronization via semaphores. When the producer creates an item, it releases the
semaphore. Also, the consumer acquires it and consumes the shared resource. The
synchronization process done via the semaphores is shown in the following code:

###Using a Semaphore to synchronize threads

import threading
import time
import random

##The optional argument gives the initial value for the internal
##counter;
##it defaults to 1.
##If the value given is less than 0, ValueError is raised.
semaphore = threading.Semaphore(0)

def consumer():
 print ("consumer is waiting.")
 ##Acquire a semaphore
 semaphore.acquire()
 ##The consumer have access to the shared resource
 print ("Consumer notify : consumed item number %s " %item)

def producer():
 global item
 time.sleep(10)
 ##create a random item
 item = random.randint(0,1000)
 print ("producer notify : produced item number %s" %item)

Thread-based Parallelism

50

 ##Release a semaphore, incrementing the internal counter by one.
 ##When it is zero on entry and another thread is waiting for it
 ##to become larger than zero again, wake up that thread.
 semaphore.release()

#Main program
if __name__ == '__main__':
 for i in range (0,5) :
 t1 = threading.Thread(target=producer)
 t2 = threading.Thread(target=consumer)
 t1.start()
 t2.start()
 t1.join()
 t2.join()
 print ("program terminated")

This is the result that we get after five runs:

Chapter 2

51

How it works…
Initializing a semaphore to 0, we obtain a so-called semaphore event whose sole purpose is
to synchronize the computation of two or more threads. Here, a thread must necessarily make
use of data or common resources simultaneously:

semaphore = threading.Semaphore(0)

This operation is very similar to that described in the lock mechanism of the lock. The
producer() thread creates the item and after that, frees the resource by calling:

semaphore.release()

The semaphore's release() method increments the counter and then notifies the other
thread. Similarly, the consumer() method acquires the data by:

 semaphore.acquire()

If the semaphore's counter is equal to 0, it blocks the condition's acquire() method until it
gets notified by a different thread. If the semaphore's counter is greater than 0, it decrements
the value.

Finally, the acquired data is then printed on the standard output:

print ("Consumer notify : consumed item number %s " %item)

There's more…
A particular use of semaphores is the mutex. A mutex is nothing but a semaphore with an
internal variable initialized to the value 1, which allows the realization of mutual exclusion in
access to data and resources.

Semaphores are still commonly used in programming languages that are multithreaded;
however, using them you can run into situations of deadlock. For example, there is a deadlock
situation created when the thread t1 executes a wait on the semaphore s1, while the t2
thread executes a wait on the semaphore s1, and then t1, and then executes a wait on s2
and t2, and then executes a wait on s1.

Thread-based Parallelism

52

Thread synchronization with a condition
A condition identifies a change of state in the application. This is a synchronization
mechanism where a thread waits for a specific condition and another thread notifies that this
condition has taken place. Once the condition takes place, the thread acquires the lock to get
exclusive access to the shared resource.

Getting ready
A good way to illustrate this mechanism is by looking again at a producer/consumer problem.
The class producer writes to a buffer as long as it is not full, and the class consumer takes the
data from the buffer (eliminating them from the latter), as long as the buffer is full. The class
producer will notify the consumer that the buffer is not empty, while the consumer will report
to the producer that the buffer is not full.

How to do it…
To show you the condition mechanism, we will again use the consumer producer model:

from threading import Thread, Condition
import time

items = []
condition = Condition()

class consumer(Thread):
 def __init__(self):
 Thread.__init__(self)

 def consume(self):
 global condition
 global items

 condition.acquire()
 if len(items) == 0:
 condition.wait()
 print("Consumer notify : no item to consume")
 items.pop()
 print("Consumer notify : consumed 1 item")
 print("Consumer notify : items to consume are "\
 + str(len(items)))

Chapter 2

53

 condition.notify()
 condition.release()

 def run(self):
 for i in range(0,20):
 time.sleep(10)
 self.consume()

class producer(Thread):
 def __init__(self):
 Thread.__init__(self)

 def produce(self):
 global condition
 global items

 condition.acquire()
 if len(items) == 10:
 condition.wait()
 print("Producer notify : items producted are "\
 + str(len(items)))
 print("Producer notify : stop the production!!")
 items.append(1)
 print("Producer notify : total items producted "\
 + str(len(items)))
 condition.notify()
 condition.release()

 def run(self):
 for i in range(0,20):
 time.sleep(5)
 self.produce()

if __name__ == "__main__":
 producer = producer()
 consumer = consumer()
 producer.start()
 consumer.start()
 producer.join()
 consumer.join()

Thread-based Parallelism

54

This is the result that we get after a single run:

How it works…
The class consumer acquires the shared resource that is modeled through the list items[]:

condition.acquire()

If the length of the list is equal to 0, the consumer is placed in a waiting state:

if len(items) == 0:
 condition.wait()

Chapter 2

55

Otherwise, it makes a pop operation from the items list:

items.pop()

So, the consumer's state is notified to the producer and the shared resource is released:

condition.notify()
condition.release()

The class producer acquires the shared resource and then it verifies that the list is completely
full (in our example, we place the maximum number of items, 10, that can be contained in
the items list). If the list is full, then the producer is placed in the wait state until the list is
consumed:

condition.acquire()
if len(items) == 10:
 condition.wait()

If the list is not full, a single item is added. The state is notified and the resource is released:

condition.notify()
condition.release()

There's more…
It's interesting to see the Python internals for the condition synchronizations mechanism. The
internal class _Condition creates a RLock() object if no existing lock is passed to the class's
constructor. Also, the lock will be managed when acquire() and released() are called:

class _Condition(_Verbose):
 def __init__(self, lock=None, verbose=None):
 _Verbose.__init__(self, verbose)
 if lock is None:
 lock = RLock()
 self.__lock = lock

Thread synchronization with an event
Events are objects that are used for communication between threads. A thread waits for a
signal while another thread outputs it. Basically, an event object manages an internal flag that
can be set to true with the set() method and reset to false with the clear() method.
The wait() method blocks until the flag is true.

Thread-based Parallelism

56

How to do it…
To understand the thread synchronization through the event object, let's take a look again
at the producer/consumer problem:

import time
from threading import Thread, Event
import random

items = []
event = Event()

class consumer(Thread):
 def __init__(self, items, event):
 Thread.__init__(self)
 self.items = items
 self.event = event

 def run(self):
 while True:
 time.sleep(2)
 self.event.wait()
 item = self.items.pop()
 print ('Consumer notify : %d popped from list by %s'\
 %(item, self.name))

class producer(Thread):
 def __init__(self, integers, event):
 Thread.__init__(self)
 self.items = items
 self.event = event

 def run(self):
 global item
 for i in range(100):
 time.sleep(2)
 item = random.randint(0, 256)
 self.items.append(item)
 print ('Producer notify : item N° %d appended \
 to list by %s'\
 % (item, self.name))
 print ('Producer notify : event set by %s'\
 % self.name)

Chapter 2

57

 self.event.set()
 print ('Produce notify : event cleared by %s \n'\
 % self.name)
 self.event.clear()

if __name__ == '__main__':
 t1 = producer(items, event)
 t2 = consumer(items, event)
 t1.start()
 t2.start()
 t1.join()
 t2.join()

This is the output that we get when we run the program. The t1 thread appends a value to
the list and then sets the event to notify the consumer. The consumer's call to wait() stops
blocking and the integer is retrieved from the list.

Thread-based Parallelism

58

How it works…
The producer class is initialized with the list of items and the Event() function. Unlike the
example with condition objects, the item list is not global, but it is passed as a parameter:

class consumer(Thread):
 def __init__(self, items, event):
 Thread._init__(self)
 self.items = items
 self.event = event

In the run method for each item that is created, the producer class appends it to the list of
items and then notifies the event. There are two steps that you need to take for this and the
first step is as follows:

self.event.set()

The second step is:

self.event.clear()

The consumer class is initialized with the list of items and the Event() function.

In the run method, the consumer waits for a new item to consume. When the item arrives, it is
popped from the item list:

def run(self):
 while True:
 time.sleep(2)
 self.event.wait()
 item = self.items.pop()
 print ('Consumer notify : %d popped from list by %s' %
 (item, self.name))

All the operations between the producer and the consumer classes can be easily resumed
with the help of the following schema:

Producer Event Management Consumer Event Management

wait

remove
item

clear
event

Sleep

add
item

set
event

P C

Thread synchronization with event objects

Chapter 2

59

Using the with statement
Python's with statement was introduced in Python 2.5. It's useful when you have two related
operations that must be executed as a pair with a block of code in between. Also, with the
with statement, you can allocate and release some resource exactly where you need it; for
this reason, the with statement is called a context manager. In the threading module, all
the objects provided by the acquire() and release() methods may be used in a with
statement block.

So the following objects can be used as context managers for a with statement:

ff Lock

ff RLock

ff Condition

ff Semaphore

Getting ready
In this example, we simply test all the objects using the with statement.

How to do it…
This example shows the basic use of the with statement. We have a set with the most
important synchronization primitives. So, we test them by calling each one with the with
statement:

import threading
import logging

logging.basicConfig(level=logging.DEBUG,
 format='(%(threadName)-10s) %(message)s',)

def threading_with(statement):
 with statement:
 logging.debug('%s acquired via with' %statement)

def threading_not_with(statement):
 statement.acquire()
 try:
 logging.debug('%s acquired directly' %statement)
 finally:
 statement.release()

Thread-based Parallelism

60

if __name__ == '__main__':

#let's create a test battery
 lock = threading.Lock()
 rlock = threading.RLock()
 condition = threading.Condition()
 mutex = threading.Semaphore(1)
 threading_synchronization_list = \
 [lock, rlock, condition, mutex]

#in the for cycle we call the threading_with
e threading_no_with function
 for statement in threading_synchronization_list :
 t1 = threading.Thread(target=threading_with,
 args=(statement,))
 t2 = threading.Thread(target=threading_not_with,
 args=(statement,))
 t1.start()
 t2.start()
 t1.join()
 t2.join()

The output shows the use of the with statement for each function and also where it is not
used:

Chapter 2

61

How it works…
In the main program, we have defined a list, threading_synchronization_list, of
thread communication directives that are to be tested:

 lock = threading.Lock()
 rlock = threading.RLock()
 condition = threading.Condition()
 mutex = threading.Semaphore(1)
 threading_synchronization_list = \

 [lock, rlock, condition, mutex]

After defining them, we pass each object in the for cycle:

for statement in threading_synchronization_list :
 t1 = threading.Thread(target=threading_with,
 args=(statement,))
 t2 = threading.Thread(target=threading_not_with,
 args=(statement,))

Finally, we have two target functions, in which the threading_with tests the with
statement:

def threading_with(statement):
 with statement:
 logging.debug('%s acquired via with' %statement)

There's more…
In the following example we have used the Python support for logging, as we can see:

logging.basicConfig(level=logging.DEBUG,
 format='(%(threadName)-10s) %(message)s',)

It embeds the thread name in every log message using the formatter code's %(threadName)
s statement. The logging module is thread-safe, so the messages from different threads are
kept distinct in the output.

Thread-based Parallelism

62

Thread communication using a queue
As discussed earlier, threading can be complicated when threads need to share data or
resources. As we saw, the Python threading module provides many synchronization primitives,
including semaphores, condition variables, events, and locks. While these options exist, it
is considered a best practice to instead concentrate on using the module queue. Queues
are much easier to deal with and make threaded programming considerably safer, as they
effectively funnel all access to a resource of a single thread and allow a cleaner and more
readable design pattern.

We will simply consider these four queue methods:

ff put(): This puts an item in the queue

ff get(): This removes and returns an item from the queue

ff task_done(): This needs to be called each time an item has been processed

ff join(): This blocks until all items have been processed

How to do it…
In this example, we will see how to use the threading module with the queue module. Also, we
have two entities here that try to share a common resource, a queue. The code is as follows:

from threading import Thread, Event
from queue import Queue
import time
import random

class producer(Thread):
 def __init__(self, queue):
 Thread.__init__(self)
 self.queue = queue

 def run(self) :
 for i in range(10):

Chapter 2

63

 item = random.randint(0, 256)
 self.queue.put(item)
 print ('Producer notify: item N°%d appended to queue by %s
 \n'\
 % (item, self.name))
 time.sleep(1)

class consumer(Thread):
 def __init__(self, queue):
 Thread.__init__(self)
 self.queue = queue

 def run(self):
 while True:
 item = self.queue.get()
 print ('Consumer notify : %d popped from queue by %s'\
 % (item, self.name))
 self.queue.task_done()

if __name__ == '__main__':
 queue = Queue()
 t1 = producer(queue)
 t2 = consumer(queue)
 t3 = consumer(queue)
 t4 = consumer(queue)
 t1.start()
 t2.start()
 t3.start()
 t4.start()
 t1.join()
 t2.join()
 t3.join()
 t4.join()

Thread-based Parallelism

64

After running the code, you should have an output similar to this:

How it works…
First, the producer class. We don't need to pass the integers list because we use the queue
to store the integers that are generated:

class producer(Thread):
 def _init__(self, queue):
 Thread._init__(self)
 self.queue = queue

Chapter 2

65

The thread in the producer class generates integers and puts them in the queue in a
for loop:

def run(self) :
 for i in range(100):
 item = random.randint(0, 256)
 self.queue.put(item)

The producer uses Queue.put(item[, block[, timeout]]) to insert data into the
queue. It has the logic to acquire the lock before inserting data in a queue.

There are two possibilities:

ff If optional args block is true and timeout is None (this is the default case that
we used in the example), it is necessary for us to block until a free slot is available.
If timeout is a positive number, it blocks at most timeout seconds and raises the
full exception if no free slot is available within that time.

ff If the block is false, put an item in the queue if a free slot is immediately available;
otherwise, raise the full exception (timeout is ignored in this case). Here, put()
checks whether the queue is full and then calls wait() internally and after this, the
producer starts waiting.

Next is the consumer class. The thread gets the integer from the queue and indicates that
it is done working on it using task_done():

def run(self):
 while True:
 item = self.queue.get()
 self.queue.task_done()

The consumer uses Queue.get([block[, timeout]]) and acquires the lock before
removing data from the queue. If the queue is empty, it puts the consumer in a waiting state.

Finally, in the main, we create the t thread for the producer and three threads, t1, t2, and t3
for the consumer class:

if __name__ == '__main__':
 queue = Queue()
 t = producer(queue)
 t1 = consumer(queue)
 t2 = consumer(queue)
 t3 = consumer(queue)

Thread-based Parallelism

66

 t.start()
 t1.start()
 t2.start()
 t3.start()

 t.join()
 t1.join()
 t2.join()
 t3.join()

All the operations between the producer class and the consumer class can easily be
resumed with the following schema:

Producer
Thread

QUEUE

Consumer
Thread 2

Consumer
Thread 2

Consumer
Thread 2

Thread synchronization with the queue module

Evaluating the performance of multithread
applications

In this recipe, we will verify the impact of the GIL, evaluating the performance of a multithread
application. The GIL, as described in the previous chapter, is the lock introduced by the
CPython interpreter. The GIL prevents parallel execution of multiple threads in the interpreter.
Before being executed each thread must wait for the GIL to release the thread that is running.
In fact, the interpreter forces the executing thread to acquire the GIL before it accesses
anything on the interpreter itself as the stack and instances of Python objects. This is precisely
the purpose of GIL—it prevents concurrent access to Python objects from different threads.
The GIL then protects the memory of the interpreter and makes the garbage work in the right
manner. The fact is that the GIL prevents the programmer from improving the performance by
executing threads in parallel. If we remove the GIL from the CPython interpreter, the threads
would be executed in parallel. The GIL does not prevent a process from running on a different
processor, it simply allows only one thread at a time to turn inside the interpreter.

Chapter 2

67

How to do it…
The next code is a simple tool that is used to evaluate the performance of a multithreaded
application. Each test calls a function only once in a hundred loop iterations. Then, we will
see the fastest among the hundred calls. In the for loop, we call the non_threaded and
threaded functions. Also, we iterate the tests that increase the number of calls and threads.
We will try with 1, 2, 3, 4, and 8 at the end of calls threads. In the non-threaded execution,
we simply call the function sequentially the same number of times corresponding to those
threads that we would use. To keep things simple, all the measurements of the speed of
execution are provided by the Python's module timer.

This module is designed to evaluate the performance of pieces of Python code, which are
generally single statements.

The code is as follows:

from threading import Thread

class threads_object(Thread):
 def run(self):
 function_to_run()

class nothreads_object(object):
 def run(self):
 function_to_run()

def non_threaded(num_iter):
 funcs = []
 for i in range(int(num_iter)):
 funcs.append(nothreads_object())
 for i in funcs:
 i.run()

def threaded(num_threads):
 funcs = []
 for i in range(int(num_threads)):
 funcs.append(threads_object())
 for i in funcs:
 i.start()
 for i in funcs:
 i.join()

def function_to_run():
 pass

Thread-based Parallelism

68

def show_results(func_name, results):
 print ("%-23s %4.6f seconds" % (func_name, results))

if __name__ == "__main__":
 import sys
 from timeit import Timer

 repeat = 100
 number = 1
 num_threads = [1, 2, 4, 8]

 print ('Starting tests')
 for i in num_threads:
 t = Timer("non_threaded(%s)"\
 % i, "from __main__ import non_threaded")
 best_result =\
 min(t.repeat(repeat=repeat, number=number))
 show_results("non_threaded (%s iters)"\
 % i, best_result)

 t = Timer("threaded(%s)"\
 % i, "from __main__ import threaded")
 best_result = \
 min(t.repeat(repeat=repeat, number=number))
 show_results("threaded (%s threads)"\
 % i, best_result)

print ('Iterations complete')

How it works…
We performed a total of three tests and for each head, we used a different function, changing
the function code function_to_run() defined in the sample code.

The machine used for these tests is a Core 2 Duo CPU – 2.33Ghz.

Chapter 2

69

The first test
In this test, we simply evaluate the empty function:

def function_to_run():
 pass

It will show us the overhead associated with each mechanism that we are testing:

If we look at the results, we see how the thread calls are more expensive than the calls
without threads. In particular, we also note how the cost of adding the thread is proportional
to their number; in our example, we have four threads with 0.0007143 seconds, while with
eight threads, we employ 0.001397 seconds.

The second test
A typical example of threaded applications is the processing of numbers. Let's take a simple
method to calculate the brute force of the Fibonacci sequence; note that there is no sharing of
the state here, just try to include more tasks that generate sequences of numbers:

def function_to_run():
 a, b = 0, 1
 for i in range(10000):
 a, b = b, a + b

Thread-based Parallelism

70

This is the output:

As we can see from the output, we get no advantage by increasing the number of threads.
The function is executed in Python and because of the overhead for creating threads and GIL,
the multithreaded example can never be faster than the non-threaded example. Again, let's
remember that the GIL allows only one thread at a time to access the interpreter.

The third test
The following test consists in reading 1,000 times a block of data (1Kb) from the test.dat
file. The function tested is as follows:

def function_to_run():
 fh=open("C:\\CookBookFileExamples\\test.dat","rb")
 size = 1024
 for i in range(1000):
 fh.read(size)

Chapter 2

71

These are the results of the test:

We have begun to see a better result in the multithreading case. In particular, we've noted
how the threaded execution is half time-consuming if we compare it with the non_threaded
one. Let's remember that in real life, we would not use threads as a benchmark. Typically, we
would put the threads in a queue, pull them out, and perform other tasks. Having multiple
threads that execute the same function although useful in certain cases, is not a common use
case for a concurrent program, unless it divides the data in the input.

The fourth test
In the final example, we use urllib.request, a Python module for fetching URL's. This
module based on the socket module, is written in C and is thread-safe.

The following script tries to get to the https://www.packtpub.com/ main page and simply
read the first 1k bytes of it:

def function_to_run():
 import urllib.request
 for i in range(10):
 with urllib.request.urlopen("https://www.packtpub.com/")as f:
 f.read(1024)

Thread-based Parallelism

72

The following is the result of the preceding code:

As you can see, during the I/O, the GIL is released. The multithreading execution becomes
faster than the single-threaded execution. Since many applications perform a certain amount
of work in the I/O, the GIL does not prevent a programmer from creating a multithreading
work that concurrently increases the speed of execution.

There's more…
Let's remember that you do not add threads to speed up the startup time of an application,
but to add support to the concurrence. For example, it's useful to create a pool of threads once
and then reuse the worker. This allows us to split a big dataset and run the same function on
different parts (the producer/consumer model). So, although it is not the norm for concurrent
applications, these tests are designed to be simple. Is the GIL an obstacle for those who work on
pure Python and try to exploit multi-core hardware architectures? Yes it does. While threads are
a language construct, the CPython interpreter is the bridge between the threads and operating
system. This is why Jython, IronPython, and others interpreters do not possess GIL, as it was
simply not necessary and it has not been reimplemented in the interpreter.

73

3
Process-based

Parallelism

In this chapter, we will cover the following recipes:

ff Using the multiprocessing Python module

ff How to spawn a process

ff How to name a process

ff How to run a process in the background

ff How to kill a process

ff How to use a process in a subclass

ff How to exchange objects between processes

ff Using a queue to exchange objects

ff Using pipes to exchange objects

ff How to synchronize processes

ff How to manage a state between processes

ff How to use a process pool

ff Using the mpi4py Python module

ff Point-to-point communication

ff Avoiding deadlock problems

ff Collective communication using broadcast

ff Collective communication using a scatter function

Process-based Parallelism

74

ff Collective communication using a gather function

ff Collective communication using AlltoAll

ff Reduction operation

ff How to optimize the communication

Introduction
In the previous chapter, we saw how to use threads to implement concurrent applications.
This section will examine the process-based approach. In particular, the focus is on two
libraries: the Python multiprocessing module and the Python mpi4py module.

The Python multiprocessing library, which is part of the standard library of the language,
implements the shared memory programming paradigm, that is, the programming of a system
that consists of one or more processors that have access to a common memory.

The Python library mpi4py implements the programming paradigm called message passing.
It is expected that there are no shared resources (and this is also called shared nothing) and
that all communications take place through the messages that are exchanged between the
processes.

For these features, it is in contrast with the techniques of communication that provide
memory sharing and the use of lock or similar mechanisms to achieve mutual exclusion.
In a message passing code, the processes are connected via the communication primitives
of the types send() and receive().

In the introduction of the Python multiprocessing docs, it is clearly mentioned that all the
functionality within this package requires the main module to be importable to the children
(https://docs.python.org/3.3/library/multiprocessing.html).

The __main__ module is not importable to the children in IDLE, even if you run the script
as a file with IDLE. To get the correct result, we will run all the examples from the Command
Prompt:

python multiprocessing_example.py

Here, multiprocessing_example.py is the script's name. For the examples described
in this chapter, we will refer to the Python distribution 3.3 (even though Python 2.7 could be
used).

https://docs.python.org/3.3/library/multiprocessing.html

Chapter 3

75

How to spawn a process
The term "spawn" means the creation of a process by a parent process. The parent process
can of course continue its execution asynchronously or wait until the child process ends its
execution. The multiprocessing library of Python allows the spawning of a process through the
following steps:

1.	 Build the object process.

2.	 Call its start() method. This method starts the process's activity.

3.	 Call its join()method. It waits until the process has completed its work and exited.

How to do it...
This example shows you how to create a series (five) of processes. Each process is associated
with the function foo(i), where i is the ID associated with the process that contains it:

#Spawn a Process: Chapter 3: Process Based Parallelism
import multiprocessing

def foo(i):
 print ('called function in process: %s' %i)
 return

if __name__ == '__main__':
 Process_jobs = []
 for i in range(5):
 p = multiprocessing.Process(target=foo, args=(i,))
 Process_jobs.append(p)
 p.start()
 p.join()

To run the process and display the results, let's open the Command Prompt, preferably in
the folder containing the example file (named spawn_a_process.py), and then type the
following command:

python spawn_a_process.py

Process-based Parallelism

76

We obtain the following output using this command:

C:\Python CookBook\ Chapter 3 - Process Based Parallelism\Example Codes
Chapter 3>python spawn_a_process.py

called function in process: 0

called function in process: 1

called function in process: 2

called function in process: 3

called function in process: 4

How it works...
As explained in the introduction section of this recipe, to create the object process, we must
first import the multiprocessing module with the following command:

import multiprocessing

Then, we create the object process in the main program:

p = multiprocessing.Process(target=foo, args=(i,))

Further, we call the start() method:

p.start()

The object process has for argument the function to which the child process is associated
(in our case, the function is called foo()). We also pass an argument to the function that
takes into account the process in which the associated function is situated. Finally, we call
the join() method on the process created:

p.join()

Without p.join(), the child process will sit idle and not be terminated, and then, you must
manually kill it.

There's more...
This reminds us once again of the importance of instantiating the Process object within the
main section:

if __name__ == '__main__':

Chapter 3

77

This is because the child process created imports the script file where the target function is
contained. Then, by instantiating the process object within this block, we prevent an infinite
recursive call of such instantiations. A valid workaround is used to define the target function
in a different script, and then imports it to the namespace. So for our first example, we could
have:

import multiprocessing
import target_function

if __name__ == '__main__':
 Process_jobs = []
 for i in range(5):
 p = multiprocessing.Process \
 (target=target_function.function,args=(i,))
 Process_jobs.append(p)
 p.start()
 p.join()

Here, target_function.py is as shown:

#target_function.py

def function(i):
 print ('called function in process: %s' %i)
 return

The output is always similar to that shown in the preceding example.

How to name a process
In the previous example, we identified the processes and how to pass a variable to the target
function. However, it is very useful to associate a name to the processes as debugging an
application requires the processes to be well marked and identifiable.

How to do it...
The procedure to name a process is similar to that described for the threading library (see the
recipe How to determine the current thread in Chapter 2, Thread-based Parallelism, of the
present book.)

Process-based Parallelism

78

In the main program, we create a process with a name and a process without a name. Here,
the common target is the foo()function:

#Naming a Process: Chapter 3: Process Based Parallelism
import multiprocessing
import time

def foo():
 name = multiprocessing.current_process().name
 print ("Starting %s \n" %name)
 time.sleep(3)
 print ("Exiting %s \n" %name)

if __name__ == '__main__':
 process_with_name = \
 multiprocessing.Process\
 (name='foo_process',\
 target=foo)
 process_with_name.daemon = True
 process_with_default_name = \
 multiprocessing.Process\
 (target=foo)
 process_with_name.start()
 process_with_default_name.start()

To run the process, open the Command Prompt and type the following command:

python naming_process.py

This is the result that we get after using the preceding command:

C:\Python CookBook\Chapter 3 - Process Based Parallelism\Example Codes
Chapter 3>python naming_process.py

Starting foo_process

Starting Process-2

Exiting foo_process

Exiting Process-2

Chapter 3

79

How it works...
The operation is similar to the procedure used for naming a thread. To name a process, we
should provide an argument with the object's name:

process_with_name = multiprocessing.Process
 (name='foo_function', target=foo)

In this case, we called the foo_function process. If the process child wants to know which
its parent process is, it must use the following statement:

name = multiprocessing.current_process().name

This statement will provide the name of the parent process.

How to run a process in the background
Running a process in background is a typical mode of execution of laborious processes
that do not require your presence or intervention, and this course may be concurrent to the
execution of other programs. The Python multiprocessing module allows us, through the
daemonic option, to run background processes.

How to do it...
To run a background process, simply follow the given code:

import multiprocessing
import time

def foo():
 name = multiprocessing.current_process().name
 print ("Starting %s \n" %name)
 time.sleep(3)
 print ("Exiting %s \n" %name)

if __name__ == '__main__':
 background_process = multiprocessing.Process\
 (name='background_process',\
 target=foo)
 background_process.daemon = True

Process-based Parallelism

80

 NO_background_process = multiprocessing.Process\
 (name='NO_background_process',\
 target=foo)

 NO_background_process.daemon = False

 background_process.start()
 NO_background_process.start()

To run the script from the Command Prompt, type the following command:

python background_process.py

The final output of this command is as follows:

C:\Python CookBook\ Chapter 3 - Process Based Parallelism\Example Codes
Chapter 3>python background_process.py

Starting NO_background_process

Exiting NO_background_process

How it works...
To execute the process in background, we set the daemon parameter:

background_process.daemon = True

The processes in the no-background mode have an output, so the daemonic process ends
automatically after the main program ends to avoid the persistence of running processes.

There's more...
Note that a daemonic process is not allowed to create child processes. Otherwise, a daemonic
process would leave its children orphaned if it gets terminated when its parent process exits.
Additionally, these are not Unix daemons or services, they are normal processes that will be
terminated (and not joined) if non-daemonic processes have exited.

Chapter 3

81

How to kill a process
It's possible to kill a process immediately using the terminate() method. Also, we use the
is_alive() method to keep track of whether the process is alive or not.

How to do it...
In this example, a process is created with the target function foo(). After the start, we kill it
with the terminate() function:

#kill a Process: Chapter 3: Process Based Parallelism
import multiprocessing
import time

def foo():
 print ('Starting function')
 time.sleep(0.1)
 print ('Finished function')

if __name__ == '__main__':
 p = multiprocessing.Process(target=foo)
 print ('Process before execution:', p, p.is_alive())
 p.start()
 print ('Process running:', p, p.is_alive())
 p.terminate()
 print ('Process terminated:', p, p.is_alive())
 p.join()
 print ('Process joined:', p, p.is_alive())
 print ('Process exit code:', p.exitcode)

Process-based Parallelism

82

The following is the output we get when we use the preceding command:

How it works...
We create the process and then monitor its lifetime by the is_alive()method. Then, we
finish it with a call to terminate():

p.terminate()

Finally, we verify the status code when the process is finished, and read the attribute of the
ExitCode process. The possible values of ExitCode are, as follows:

ff == 0: This means that no error was produced

ff > 0: This means that the process had an error and exited that code

ff < 0: This means that the process was killed with a signal of -1 * ExitCode

For our example, the output value of the ExitCode code is equal to -15. The negative value
-15 indicates that the child was terminated by an interrupt signal identified by the number 15.

How to use a process in a subclass
To implement a custom subclass and process, we must:

ff Define a new subclass of the Process class

ff Override the _init__(self [,args]) method to add additional arguments

ff Override the run(self [,args]) method to implement what Process should
when it is started

Once you have created the new Process subclass, you can create an instance of it and then
start by invoking the start() method, which will in turn call the run() method.

Chapter 3

83

How to do it...
We will rewrite the first example in this manner:

#Using a process in a subclass Chapter 3: Process Based #Parallelism

import multiprocessing

class MyProcess(multiprocessing.Process):
 def run(self):
 print ('called run method in process: %s' %self.name)
 return

if __name__ == '__main__':
 jobs = []
 for i in range(5):
 p = MyProcess ()
 jobs.append(p)
 p.start()
 p.join()

To run the script from the Command Prompt, type the following command:

python subclass_process.py

The result of the preceding command is as follows:

C:\Python CookBook\Chapter 3 - Process Based Parallelism\Example Codes
Chapter 3>python subclass_process.py

called run method in process: MyProcess-1

called run method in process: MyProcess-2

called run method in process: MyProcess-3

called run method in process: MyProcess-4

called run method in process: MyProcess-5

How it works...
Each Process subclass could be represented by a class that extends the Process class and
overrides its run() method. This method is the starting point of Process:

class MyProcess (multiprocessing.Process):
 def run(self):
 print ('called run method in process: %s' %self.name)
 return

Process-based Parallelism

84

In the main program, we create several objects of the type MyProcess(). The execution of
the thread begins when the start() method is called:

p = MyProcess()
p.start()

The join() command just handles the termination of processes.

How to exchange objects between
processes

The development of parallel applications has the need for the exchange of data between
processes. The multiprocessing library has two communication channels with which it can
manage the exchange of objects: queues and pipes.

Communication
Channels

QUEUES PIPES

Communication channels in the multiprocessing module

Using queue to exchange objects
As explained before, it is possible for us to share data with the queue data structure.

A queue returns a process shared queue, is thread and process safe, and any serializable
object (Python serializes an object using the pickable module) can be exchanged through it.

Chapter 3

85

How to do it...
In the following example, we show you how to use a queue for a producer-consumer problem.
The producer class creates the item and queues and then, the consumer class provides
the facility to remove the inserted item:

import multiprocessing
import random
import time

class producer(multiprocessing.Process):
 def __init__(self, queue):
 multiprocessing.Process.__init__(self)
 self.queue = queue

 def run(self) :
 for i in range(10):
 item = random.randint(0, 256)
 self.queue.put(item)
 print ("Process Producer : item %d appended to queue %s"\
 % (item,self.name))
 time.sleep(1)
 print ("The size of queue is %s"\
 % self.queue.qsize())

class consumer(multiprocessing.Process):
 def __init__(self, queue):
 multiprocessing.Process.__init__(self)
 self.queue = queue

 def run(self):
 while True:
 if (self.queue.empty()):
 print("the queue is empty")
 break
 else :
 time.sleep(2)
 item = self.queue.get()
 print ('Process Consumer : item %d popped from by %s \n'\
 % (item, self.name))
 time.sleep(1)

Process-based Parallelism

86

if __name__ == '__main__':
 queue = multiprocessing.Queue()
 process_producer = producer(queue)
 process_consumer = consumer(queue)
 process_producer.start()
 process_consumer.start()
 process_producer.join()
 process_consumer.join()

This is the output that we get after the execution:

C:\Python CookBook\Chapter 3 - Process Based Parallelism\Example Codes
Chapter 3>python using_queue.py

Process Producer : item 69 appended to queue producer-1

The size of queue is 1

Process Producer : item 168 appended to queue producer-1

The size of queue is 2

Process Consumer : item 69 popped from by consumer-2

Process Producer : item 235 appended to queue producer-1

The size of queue is 2

Process Producer : item 152 appended to queue producer-1

The size of queue is 3

Process Producer : item 213 appended to queue producer-1

Process Consumer : item 168 popped from by consumer-2

The size of queue is 3

Process Producer : item 35 appended to queue producer-1

The size of queue is 4

Process Producer : item 218 appended to queue producer-1

The size of queue is 5

Process Producer : item 175 appended to queue producer-1

Process Consumer : item 235 popped from by consumer-2

The size of queue is 5

Process Producer : item 140 appended to queue producer-1

The size of queue is 6

Process Producer : item 241 appended to queue producer-1

The size of queue is 7

Process Consumer : item 152 popped from by consumer-2

Process Consumer : item 213 popped from by consumer-2

Chapter 3

87

Process Consumer : item 35 popped from by consumer-2

Process Consumer : item 218 popped from by consumer-2

Process Consumer : item 175 popped from by consumer-2

Process Consumer : item 140 popped from by consumer-2

Process Consumer : item 241 popped from by consumer-2

the queue is empty

How it works...
The multiprocessing class has its Queue object instantiated in the main program:

if __name__ == '__main__':
 queue = multiprocessing.Queue()

Then, we create the two processes, producer and consumer, with the Queue object as an
attribute:

 process_producer = producer(queue)
 process_consumer = consumer(queue)

The process producer is responsible for entering 10 items in the queue using its put()
method:

for i in range(10):
 item = random.randint(0, 256)
 self.queue.put(item)

The process consumer has the task of removing the items from the queue (using the get
method) and verifying that the queue is not empty. If this happens, the flow inside the while
loop ends with a break statement:

def run(self):
 while True:
 if (self.queue.empty()):
 print("the queue is empty")
 break
 else :
 time.sleep(2)
 item = self.queue.get()
 print ('Process Consumer : item %d popped from by %s
\n'\
 % (item, self.name))
 time.sleep(1)

Process-based Parallelism

88

There's more...
A queue has the JoinaleQueue subclass. It has the following two additional methods:

ff task_done(): This indicates that a task is complete, for example, after the get()
method is used to fetch items from the queue. So, it must be used only by queue
consumers.

ff join(): This blocks the processes until all the items in the queue have been
achieved and processed.

Using pipes to exchange objects
The second communication channel is the pipe data structure.

A pipe does the following:

ff Returns a pair of connection objects connected by a pipe

ff In this, every object has send/receive methods to communicate between processes

How to do it...
Here is a simple example with pipes. We have one process pipe the gives out numbers from
0 to 9 and another process that takes the numbers and squares them:

import multiprocessing

def create_items(pipe):
 output_pipe, _ = pipe
 for item in range(10):
 output_pipe.send(item)
 output_pipe.close()

def multiply_items(pipe_1, pipe_2):
 close, input_pipe = pipe_1
 close.close()
 output_pipe, _ = pipe_2
 try:
 while True:
 item = input_pipe.recv()
 output_pipe.send(item * item)
 except EOFError:
 output_pipe.close()

Chapter 3

89

if __name__== '__main__':

#First process pipe with numbers from 0 to 9
 pipe_1 = multiprocessing.Pipe(True)
 process_pipe_1 = \
 multiprocessing.Process\
 (target=create_items, args=(pipe_1,))
 process_pipe_1.start()

#second pipe,
 pipe_2 = multiprocessing.Pipe(True)
 process_pipe_2 = \
 multiprocessing.Process\
 (target=multiply_items, args=(pipe_1, pipe_2,))
 process_pipe_2.start()

 pipe_1[0].close()
 pipe_2[0].close()

 try:
 while True:

 print (pipe_2[1].recv())
 except EOFError:
 print("End")

The output obtained is as follows:

Process-based Parallelism

90

How it works...
Let's remember that the pipe()function returns a pair of connection objects connected by a
two way pipe. In the example, out_pipe contains the numbers from 0 to 9, generated by the
target function create_items():

def create_items(pipe):
 output_pipe, _ = pipe
 for item in range(10):
 output_pipe.send(item)
 output_pipe.close()

In the second process, we have two pipes: the input pipe and final output pipe that contains
the results:

process_pipe_2 = multiprocessing.Process(target=multiply_items,
 args=(pipe_1, pipe_2,))

These are finally printed as:

try:
 while True:
 print (pipe_2[1].recv())
except EOFError:
 print ("End")

How to synchronize processes
Multiple processes can work together to perform a given task. Usually, they share data. It is
important that the access to shared data by various processes does not produce inconsistent
data. Processes that cooperate by sharing data must therefore act in an orderly manner in
order to access that data. Synchronization primitives are quite similar to those encountered
for the library and threading.

They are as follows:

ff Lock: This object can be in one of the states: locked and unlocked. A lock object
has two methods, acquire() and release(), to manage the access to a shared
resource.

ff Event: This realizes simple communication between processes, one process signals
an event and the other processes wait for it. An Event object has two methods,
set() and clear(), to manage its own internal flag.

ff Condition: This object is used to synchronize parts of a workflow, in sequential or
parallel processes. It has two basic methods, wait() is used to wait for a condition
and notify_all() is used to communicate the condition that was applied.

Chapter 3

91

ff Semaphore: This is used to share a common resource, for example, to support a fixed
number of simultaneous connections.

ff RLock: This defines the recursive lock object. The methods and functionality for
RLock are the same as the Threading module.

ff Barrier: This divides a program into phases as it requires all of the processes to
reach it before any of them proceeds. Code that is executed after a barrier cannot
be concurrent with the code executed before the barrier.

How to do it...
The example here shows the use of barrier() to synchronize two processes. We have
four processes, wherein process1 and process2 are managed by a barrier statement, while
process3 and process4 have no synchronizations directives:

import multiprocessing
from multiprocessing import Barrier, Lock, Process
from time import time
from datetime import datetime

def test_with_barrier(synchronizer, serializer):
 name = multiprocessing.current_process().name
 synchronizer.wait()
 now = time()
 with serializer:
 print("process %s ----> %s" \
 %(name,datetime.fromtimestamp(now)))

def test_without_barrier():
 name = multiprocessing.current_process().name
 now = time()
 print("process %s ----> %s" \
 %(name ,datetime.fromtimestamp(now)))

if __name__ == '__main__':
 synchronizer = Barrier(2)
 serializer = Lock()
 Process(name='p1 - test_with_barrier'\
 ,target=test_with_barrier,\
 args=(synchronizer,serializer)).start()
 Process(name='p2 - test_with_barrier'\
 ,target=test_with_barrier,\
 args=(synchronizer,serializer)).start()
 Process(name='p3 - test_without_barrier'\

Process-based Parallelism

92

 ,target=test_without_barrier).start()
 Process(name='p4 - test_without_barrier'\
 ,target=test_without_barrier).start()

By running the script, we can see that process1 and process2 print out the same timestamps:

C:\Python CookBook\Chapter 3 - Process Based Parallelism\Example Codes
Chapter 3>python process_barrier.py

process p1 - test_with_barrier ----> 2015-05-09 11:11:33.291229

process p2 - test_with_barrier ----> 2015-05-09 11:11:33.291229

process p3 - test_without_barrier ----> 2015-05-09 11:11:33.310230

process p4 - test_without_barrier ----> 2015-05-09 11:11:33.333231

How it works...
In the main program, we created four processes; however, we also need a barrier and lock
primitive. The parameter 2 in the barrier statement stands for the total number of process
that are to be managed:

if __name__ == '__main__':
 synchronizer = Barrier(2)
 serializer = Lock()
 Process(name='p1 - test_with_barrier'\
 ,target=test_with_barrier,\
 args=(synchronizer,serializer)).start()
 Process(name='p2 - test_with_barrier'\
 ,target=test_with_barrier,\
 args=(synchronizer,serializer)).start()

The test_with_barrier_function executes the barrier's wait()method:

def test_with_barrier(synchronizer, serializer):
 name = multiprocessing.current_process().name
 synchronizer.wait()

When the two processes have called the wait() method, they are released simultaneously:

 now = time()
 with serializer:
 print("process %s ----> %s" %(name \
 ,datetime.fromtimestamp(now)))

Chapter 3

93

The following figure shows you how a barrier works with the two processes:

Process P1

Process P2

Process P2Process P1

Process P1 Process P2

Barrier

Barrier

Barrier

The two Process
are executed

Process P2 reaches the Barrier, it
sends a signal to Process P1, and
blocks until P1 reaches the Barrier.

All the Processes are arrived at the
Barrier. They access to their shared
resources to update their local data
and keep on executing.

Process management with a barrier

How to manage a state between processes
Python multiprocessing provides a manager to coordinate shared information between all its
users. A manager object controls a server process that holds Python objects and allows other
processes to manipulate them.

A manager has the following properties:

ff It controls the server process that manages a shared object

ff It makes sure the shared object gets updated in all processes when anyone
modifies it

Process-based Parallelism

94

How to do it...
Let's see an example of how to share a state between processes:

1.	 First, the program creates a manager list, shares it between n number of
taskWorkers, and every worker updates an index.

2.	 After all workers finish, the new list is printed to stdout:

import multiprocessing

def worker(dictionary, key, item):
 dictionary[key] = item

if __name__ == '__main__':
 mgr = multiprocessing.Manager()
 dictionary = mgr.dict()
 jobs = [multiprocessing.Process\
 (target=worker, args=(dictionary, i, i*2))
 for i in range(10)
]
 for j in jobs:
 j.start()
 for j in jobs:
 j.join()
 print ('Results:', dictionary)

The output is as follows:

C:\Python CookBook\Chapter 3 - Process Based Parallelism\Example Codes
Chapter 3>python manager.py

key = 0 value = 0

key = 2 value = 4

key = 6 value = 12

key = 4 value = 8

key = 8 value = 16

key = 7 value = 14

key = 3 value = 6

key = 1 value = 2

key = 5 value = 10

key = 9 value = 18

Results: {0: 0, 1: 2, 2: 4, 3: 6, 4: 8, 5: 10, 6: 12, 7: 14, 8: 16, 9:
18}

Chapter 3

95

How it works...
We declare the manager with the following statement:

mgr = multiprocessing.Manager()

In the next statement, a data structure of the type dictionary is created:

dictionary = mgr.dict()

Then, the multiprocess is launched:

jobs = [multiprocessing.Process \
 (target=taskWorker,args=(dictionary,i,i*2))
 for i in range(10)
]

for j in jobs:
 j.start()

Here, the target function taskWorker adds an item to the data structure dictionary:

def taskWorker(dictionary, key, item):
 dictionary[key] = value

Finally, we get the output and all the dictionaries are printed out:

for j in jobs:
 j.join()
 print ('Results:', d)

How to use a process pool
The multiprocessing library provides the Pool class for simple parallel processing tasks. The
Pool class has the following methods:

ff apply(): It blocks until the result is ready.

ff apply_async(): This is a variant of the apply() method, which returns a result
object. It is an asynchronous operation that will not lock the main thread until all the
child classes are executed.

ff map(): This is the parallel equivalent of the map() built-in function. It blocks until
the result is ready, this method chops the iterable data in a number of chunks that
submits to the process pool as separate tasks.

Process-based Parallelism

96

ff map_async(): This is a variant of the map() method, which returns a result object.
If a callback is specified, then it should be callable, which accepts a single argument.
When the result becomes ready, a callback is applied to it (unless the call failed). A
callback should be completed immediately; otherwise, the thread that handles the
results will get blocked.

How to do it…
This example shows you how to implement a process pool to perform a parallel application.
We create a pool of four processes and then we use the pool's map method to perform a
simple calculation:

def function_square(data):
 result = data*data
 return result

if __name__ == '__main__':
 inputs = list(range(100))
 pool = multiprocessing.Pool(processes=4)
 pool_outputs = pool.map(function_square, inputs)
 pool.close()
 pool.join()
 print ('Pool :', pool_outputs)

This is the result that we get after completing the calculation:

C:\Python CookBook\Chapter 3 - Process Based Parallelism\Example Codes
Chapter 3>\python process_pool.py

Pool : [0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196,
225, 256, 289, 324, 361, 400, 441, 484, 529, 576, 625, 676, 729, 784,
841, 900, 961, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600,
1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500, 2601, 2704,
2809, 2916, 3025, 3136, 3249, 3364, 3481, 3600, 3721, 3844, 3969, 4096,
4225, 4356, 4489, 4624, 4761, 4900, 5041, 5184, 5329, 5476, 5625, 5776,
5929, 6084, 6241, 6400, 6561, 6724, 6889, 7056, 7225, 7396, 7569, 7744,
7921, 8100, 8281, 8464, 8649, 8836, 9025, 9216, 9409, 9604, 9801]

Chapter 3

97

How it works…
The multiprocessing.Pool method applies function_square to the input element to
perform a simple calculation. The total number of parallel processes is four:

 pool = multiprocessing.Pool(processes=4)

The pool.map method submits to the process pool as separate tasks

pool_outputs = pool.map(function_square, inputs)

The parameter inputs is a list of integer from 0 to 100:

inputs = list(range(100))

The result of the calculation is stored in pool_outputs. Then, the final result is printed:

print ('Pool :', pool_outputs)

It is important to note that the result of the pool.map() method is equivalent to Python's
built-in function map(), except that the processes run parallelly.

Using the mpi4py Python module
The Python programming language provides a number of MPI modules to write parallel
programs. The most interesting of these is the mpi4py library. It is constructed on top of the
MPI-1/2 specifications and provides an object-oriented interface, which closely follows MPI-2
C++ bindings. A C MPI user could use this module without learning a new interface. Therefore,
it is widely used as an almost full package of an MPI library in Python.

The main applications of the module, which will be described in this chapter, are:

ff Point-to-point communication

ff Collective communication

ff Topologies

Process-based Parallelism

98

Getting ready
The installation procedure of mpi4py using a Windows machine is, as follows (for other OS,
refer to http://mpi4py.scipy.org/docs/usrman/install.html#):

1.	 Download the MPI software library mpich
from http://www.mpich.org/downloads/.

The MPICH download page

2.	 Open an admin Command Prompt by right-clicking on the command prompt icon and
select Run as administrator.

3.	 Run msiexec /i mpich_installation_file.msi from the admin Command
Prompt to install MPICH2.

4.	 During the installation, select the option that installs MPICH2 for all users.

5.	 Run wmpiconfig and store the username/password. Use your real Windows login
name and password.

6.	 Add C:\Program Files\MPICH2\bin to the system path—no need to reboot the
machine.

7.	 Check smpd using smpd -status. It should return smpd running on
$hostname$.

8.	 To test the execution environment, go to the $MPICHROOT\examples directory and
run cpi.exe using mpiexec -n 4 cpi.

http://mpi4py.scipy.org/docs/usrman/install.html#
http://www.mpich.org/downloads/

Chapter 3

99

9.	 Download the Python installer pip from https://pip.pypa.io/en/stable/
installing.html.

It will create a pip.exe file in the Scripts directory of your Python distribution.

The PIP download page

10.	 Then, from the Command Prompt, type the following to install mpi4py:

C:> pip install mpi4py

How to do it…
Let's start our journey to the MPI library by examining the classic code or a program that prints
the phrase "Hello, world!" on each process that is instantiated:

#hello.py
from mpi4py import MPI
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
print ("hello world from process ", rank)

To execute the code, type the following command line:

C:> mpiexec -n 5 python helloWorld_MPI.py

https://pip.pypa.io/en/stable/installing.html
https://pip.pypa.io/en/stable/installing.html

Process-based Parallelism

100

This is the result that we would get after we execute this code:

('hello world from process ', 1)

('hello world from process ', 0)

('hello world from process ', 2)

('hello world from process ', 3)

('hello world from process ', 4)

How it works…
In MPI, the processes involved in the execution of a parallel program are identified by a
sequence of non-negative integers called ranks. If we have a number p of processes that runs
a program, the processes will then have a rank that goes from 0 to p-1. The function MPI that
comes to us to solve this problem has the following function calls:

rank = comm.Get_rank()

This function returns the rank of the process that called it. The comm argument is called a
communicator, as it defines its own set of all processes that can communicate together,
namely:

comm = MPI.COMM_WORLD

P0

P2

P3

P4

P5

An example of communication between processes in MPI.COMM_WORLD

There's more…
It should be noted that, for illustration purposes only, the stdout output will not always
be ordered, as multiple processes can apply at the same time by writing on the screen
and the operating system arbitrarily chooses the order. So, we are ready for a fundamental
observation: every process involved in the execution of MPI runs the same compiled binary,
so each process receives the same instructions to be executed.

Chapter 3

101

Point-to-point communication
One of the most important features among those provided by MPI is the point-to-point
communication, which is a mechanism that enables data transmission between two
processes: a process receiver, and process sender.

The Python module mpi4py enables point-to-point communication via two functions:

ff Comm.Send(data, process_destination): This sends data to the destination
process identified by its rank in the communicator group

ff Comm.Recv(process_source): This receives data from the source process, which
is also identified by its rank in the communicator group

The Comm parameter, which stands for communicator, defines the group of processes, that
may communicate through message passing:

comm = MPI.COMM_WORLD

How to do it…
In the following example, we show you how to utilize the comm.send and comm.recv
directives to exchange messages between different processes:

from mpi4py import MPI

comm=MPI.COMM_WORLD
rank = comm.rank
print("my rank is : " , rank)

if rank==0:
 data= 10000000
 destination_process = 4
 comm.send(data,dest=destination_process)
 print ("sending data %s " %data + \
 "to process %d" %destination_process)

if rank==1:
 destination_process = 8
 data= "hello"
 comm.send(data,dest=destination_process)
 print ("sending data %s :" %data + \
 "to process %d" %destination_process)

Process-based Parallelism

102

if rank==4:
 data=comm.recv(source=0)
 print ("data received is = %s" %data)

if rank==8:
 data1=comm.recv(source=1)
 print ("data1 received is = %s" %data1)

To run the script, type the following:

C:\>mpiexec -n 9 python pointToPointCommunication.py

This is the output that you'll get after you run the script:

('my rank is : ', 5)

('my rank is : ', 1)

sending data hello :to process 8

('my rank is : ', 3)

('my rank is : ', 0)

sending data 10000000 to process 4

('my rank is : ', 2)

('my rank is : ', 7)

('my rank is : ', 4)

data received is = 10000000

('my rank is : ', 8)

data1 received is = hello

('my rank is : ', 6)

How it works…
We ran the example with a total number of processes equal to nine. So in the communicator
group, comm, we have nine tasks that can communicate with each other:

comm=MPI.COMM_WORLD

Also, to identify a task or processes inside the group, we use their rank value:

rank = comm.rank

We have two sender processes and two receiver processes.

Chapter 3

103

The process of a rank equal to zero sends numerical data to the receiver process of a rank
equal to four:

if rank==0:
 data= 10000000
 destination_process = 4
 comm.send(data,dest=destination_process)

Similarly, we must specify the receiver process of rank equal to four. Also, we note that the
comm.recv statement must contain as an argument, the rank of the sender process:

…
if rank==4:
 data=comm.recv(source=0)

For the other sender and receiver processes, the process of a rank equal to one and the
process of a rank equal to eight, respectively, the situation is the same but the only difference
is the type of data. In this case, for the sender process, we have a string that is to be sent:

if rank==1:
 destination_process = 8
 data= "hello"
 comm.send(data,dest=destination_process)

For the receiver process of a rank equal to eight, the rank of the sender process is pointed out:

if rank==8:
 data1=comm.recv(source=1)

The following figure summarizes the point-to-point communication protocol in mpi4py:

send Request to send

Permission to send

receive

sender receiver

DATA

The send/receive transmission protocol

Process-based Parallelism

104

It is a two-step process, consisting of sending some data from one task (sender) and of
receiving these data by another task (receiver). The sending task must specify the data to be
sent and their destination (the receiver process), while the receiving task has to specify the
source of the message to be received.

There's more…
The comm.send() and comm.recv() functions are blocking functions; they block the caller
until the buffered data involved can safely be used. Also in MPI, there are two management
methods of sending and receiving messages:

ff The buffered mode

ff The synchronous mode

In the buffered mode, the flow control returns to the program as soon as the data to be sent
has been copied to a buffer. This does not mean that the message is sent or received. In
the synchronous mode, however, the function only gets terminated when the corresponding
receive function begins receiving the message.

Avoiding deadlock problems
A common problem we face is that of the deadlock. This is a situation where two (or more)
processes block each other and wait for the other to perform a certain action that serves
to another, and vice versa. The mpi4py module doesn't provide any specific functionality to
resolve this but only some measures, which the developer must follow to avoid problems of
deadlock.

How to do it…
Let's first analyze the following Python code, which will introduce a typical deadlock problem;
we have two processes, rank equal to one and rank equal to five, that communicate which
each other and both have the data sender and data receiver functionality:

from mpi4py import MPI

comm=MPI.COMM_WORLD
rank = comm.rank
print("my rank is : " , rank)

Chapter 3

105

if rank==1:
 data_send= "a"
 destination_process = 5
 source_process = 5

 data_received=comm.recv(source=source_process)
 comm.send(data_send,dest=destination_process)

 print ("sending data %s " %data_send + \
 "to process %d" %destination_process)
 print ("data received is = %s" %data_received)

if rank==5:
 data_send= "b"
 destination_process = 1
 source_process = 1

 comm.send(data_send,dest=destination_process)
 data_received=comm.recv(source=source_process)

 print ("sending data %s :" %data_send + \
 "to process %d" %destination_process)
 print ("data received is = %s" %data_received)

How it works…
If we try to run this program (it makes sense to execute it with only two processes), we note
that none of the two processes are able to proceed:

C:\>mpiexec -n 9 python deadLockProblems.py

('my rank is : ', 8)

('my rank is : ', 3)

('my rank is : ', 2)

('my rank is : ', 7)

('my rank is : ', 0)

('my rank is : ', 4)

('my rank is : ', 6)

Process-based Parallelism

106

Both prepare to receive a message from the other and get stuck there. This happens because
the function MPI comm.recv() as well as the comm.send()MPI blocks them. It means that
the calling process waits for their completion. As for the comm.send() MPI, the completion
occurs when the data has been sent and may be overwritten without modifying the message.
The completion of the comm.recv()MPI, instead, is when the data has been received and
can be used. To solve the problem, the first idea that occurs is to invert the comm.recv()
MPI with the comm.send() MPI in this way:

if rank==1:
 data_send= "a"
 destination_process = 5
 source_process = 5
 comm.send(data_send,dest=destination_process)
 data_received=comm.recv(source=source_process)

if rank==5:
 data_send= "b"
 destination_process = 1
 source_process = 1
 data_received=comm.recv(source=source_process)
 comm.send(data_send,dest=destination_process)

This solution, however, even if correct from the logical point of view, not always ensures the
avoidance of a deadlock. Since the communication is carried out through a buffer, where the
comm.send() MPI copies the data to be sent, the program runs smoothly only if this buffer
is able to hold them all. Otherwise, there is a deadlock: the sender cannot finish sending
data because the buffer is committed and the receiver cannot receive data as it is blocked
by a comm.send() MPI, which is not yet complete. At this point, the solution that allows us
to avoid deadlocks is used to swap the sending and receiving functions so as to make them
asymmetrical:

if rank==1:
 data_send= "a"
 destination_process = 5
 source_process = 5
 comm.send(data_send,dest=destination_process)
 data_received=comm.recv(source=source_process)

if rank==5:
 data_send= "b"
 destination_process = 1
 source_process = 1
 comm.send(data_send,dest=destination_process)
 data_received=comm.recv(source=source_process)

Chapter 3

107

Finally, we get the correct output:

C:\>mpiexec -n 9 python deadLockProblems.py

('my rank is : ', 7)

('my rank is : ', 0)

('my rank is : ', 8)

('my rank is : ', 1)

sending data a to process 5

data received is = b

('my rank is : ', 5)

sending data b :to process 1

data received is = a

('my rank is : ', 2)

('my rank is : ', 3)

('my rank is : ', 4)

('my rank is : ', 6)

There's more…
The solution to the deadlock is not the only solution. There is, for example, a particular
function that unifies the single call that sends a message to a given process and receives
another message that comes from another process. This function is called Sendrecv:

Sendrecv(self, sendbuf, int dest=0, int sendtag=0, recvbuf=None, int
source=0, int recvtag=0, Status status=None)

As you can see, the required parameters are the same as the comm.send() MPI and the
comm.recv() MPI. Also, in this case, the function blocks, but compared to the two already
seen previously it offers the advantage of leaving the communication subsystem responsible
for checking the dependencies between sending and receiving, thus avoiding the deadlock. In
this way the code of the previous example becomes as shown:

if rank==1:
 data_send= "a"
 destination_process = 5
 source_process = 5
 data_received=comm.sendrecv(data_send,dest=destination_process,
 source =source_process)
if rank==5:
 data_send= "b"

Process-based Parallelism

108

 destination_process = 1
 source_process = 1
 data_received=comm.sendrecv(data_send,dest=destination_process,
 source=source_process)

Collective communication using broadcast
During the development of a parallel code, we often find ourselves in the situation where we
have to share between multiple processes the value of a certain variable at runtime or certain
operations on variables that each process provides (presumably with different values).

To resolve this type of situations, the communication trees are used (for example the process
0 sends data to the processes 1 and 2, which respectively will take care of sending them to
the processes 3, 4, 5, and 6, and so on).

Instead, MPI libraries provide functions ideal for the exchange of information or the use of
multiple processes that are clearly optimized for the machine in which they are performed.

1 2 3 4

0

Broadcasting data from process 0 to processes 1, 2, 3, and 4

A communication method that involves all the processes belonging to a communicator is
called a collective communication. Consequently, a collective communication generally
involves more than two processes. However, instead of this, we will call the collective
communication broadcast, wherein a single process sends the same data to any other
process. The mpi4py functionalities in the broadcast are offered by the following method:

buf = comm.bcast(data_to_share, rank_of_root_process)

This function simply sends the information contained in the message process root to every
other process that belongs to the comm communicator; each process must, however, call it by
the same values of root and comm.

Chapter 3

109

How to do it…
Let's now see an example wherein we've used the broadcast function. We have a root process
of rank equal to zero that shares its own data, variable_to_share, with the other
processes defined in the communicator group:

from mpi4py import MPI

comm = MPI.COMM_WORLD
rank = comm.Get_rank()

if rank == 0:
 variable_to_share = 100

else:
 variable_to_share = None

variable_to_share = comm.bcast(variable_to_share, root=0)
print("process = %d" %rank + " variable shared = %d " \
 %variable_to_share)

The output obtained with a communicator group of ten processes is:

C:\>mpiexec -n 10 python broadcast.py

process = 0 variable shared = 100

process = 8 variable shared = 100

process = 2 variable shared = 100

process = 3 variable shared = 100

process = 4 variable shared = 100

process = 5 variable shared = 100

process = 9 variable shared = 100

process = 6 variable shared = 100

process = 1 variable shared = 100

process = 7 variable shared = 100

How it works…
The process root of rank zero instantiates a variable, variabile_to_share, equal to 100.
This variable will be shared with the other processes of the communication group:

if rank == 0:
 variable_to_share = 100

Process-based Parallelism

110

To perform this, we also introduce the broadcasting communication statement:

variable_to_share = comm.bcast(variable_to_share, root=0)

Here, the parameters in the function are the data to be shared and the root process or main
sender process, as denoted in the previous figure. When we run the code, in our case, we
have a communication group of ten processes, variable_to_share is shared between the
others processes in the group. Finally, the print statement visualizes the rank of the running
process and the value of its variable:

print("process = %d" %rank + " variable shared = %d " \
 %variable_to_share)

There's more…
Collective communication allows simultaneous data transmission between multiple processes
in a group. In mpi4py the collective communication are provided only in their blocking version
(they block the caller method until the buffered data involved can safely be used.)

The most commonly collective operations are:

ff Barrier synchronization across the group's processes

ff Communication functions:

�� Broadcasting data from one process to all process in the group

�� Gathering data from all process to one process

�� Scattering data from one process to all process

ff Reduction operation

Collective communication using scatter
The scatter functionality is very similar to a scatter broadcast but has one major difference,
while comm.bcast sends the same data to all listening processes, comm.scatter can
send the chunks of data in an array to different processes. The following figure illustrates
the functionality of scatter:

Chapter 3

111

1 2 3 4

0

Scattering data from process 0 to processes 1, 2, 3, 4

The comm.scatter function takes the elements of the array and distributes them to the
processes according to their rank, for which the first element will be sent to the process zero,
the second element to the process 1, and so on. The function implemented in mpi4py is as
follows:

recvbuf = comm.scatter(sendbuf, rank_of_root_process)

How to do it…
In the next example, we see how to distribute data to different processes using the scatter
functionality:

from mpi4py import MPI

comm = MPI.COMM_WORLD
rank = comm.Get_rank()

if rank == 0:
 array_to_share = [1, 2, 3, 4 ,5 ,6 ,7, 8 ,9 ,10]

else:
 array_to_share = None

recvbuf = comm.scatter(array_to_share, root=0)
print("process = %d" %rank + " recvbuf = %d " %array_to_share)

Process-based Parallelism

112

The output of the preceding code is, as follows:

C:\>mpiexec -n 10 python scatter.py

process = 0 variable shared = 1

process = 4 variable shared = 5

process = 6 variable shared = 7

process = 2 variable shared = 3

process = 5 variable shared = 6

process = 3 variable shared = 4

process = 7 variable shared = 8

process = 1 variable shared = 2

process = 8 variable shared = 9

process = 9 variable shared = 10

How it works…
The process of rank zero distributes the array_to_share data structure to other processes:

array_to_share = [1, 2, 3, 4 ,5 ,6 ,7, 8 ,9 ,10]

The recvbuf parameter indicates the value of the ith variable that will be sent to the ith
process through the comm.scatter statement:

recvbuf = comm.scatter(array_to_share, root=0)

We also remark that one of the restrictions to comm.scatter is that you can scatter as many
elements as the processors you specify in the execution statement. In fact attempting
to scatter more elements than the processors specified (three in this example), you will get
an error like this:

C:\> mpiexec -n 3 python scatter.py

Traceback (most recent call last):

 File "scatter.py", line 13, in <module>

 recvbuf = comm.scatter(array_to_share, root=0)

 File "Comm.pyx", line 874, in mpi4py.MPI.Comm.scatter (c:\users\utente\
appdata

Chapter 3

113

\local\temp\pip-build-h14iaj\mpi4py\src\mpi4py.MPI.c:73400)

 File "pickled.pxi", line 658, in mpi4py.MPI.PyMPI_scatter (c:\users\
utente\app

data\local\temp\pip-build-h14iaj\mpi4py\src\mpi4py.MPI.c:34035)

 File "pickled.pxi", line 129, in mpi4py.MPI._p_Pickle.dumpv (c:\users\
utente\a

ppdata\local\temp\pip-build-h14iaj\mpi4py\src\mpi4py.MPI.c:28325)

ValueError: expecting 3 items, got 10

mpiexec aborting job...

job aborted:

rank: node: exit code[: error message]

0: Utente-PC: 123: mpiexec aborting job

1: Utente-PC: 123

2: Utente-PC: 123

There's more…
The mpi4py library provides two other functions that are used to scatter data:

ff comm.scatter(sendbuf, recvbuf, root=0): This sends data from one
process to all other processes in a communicator.

ff comm.scatterv(sendbuf, recvbuf, root=0): This scatters data from one
process to all other processes in a group that provides different amount of data and
displacements at the sending side.

The sendbuf and recvbuf arguments must be given in terms of a list (as in, the point-to-
point function comm.send):

buf = [data, data_size, data_type]

Here, data must be a buffer-like object of the size data_size and of the type data_type.

Process-based Parallelism

114

Collective communication using gather
The gather function performs the inverse of the scatter functionality. In this case, all
processes send data to a root process that collects the data received. The gather function
implemented in mpi4py is, as follows:

recvbuf = comm.gather(sendbuf, rank_of_root_process)

Here, sendbuf is the data that is sent and rank_of_root_process represents the process
receiver of all the data:

1 2

0

3 4

Gathering data from processes 1, 2, 3, 4

How to do it…
In the following example, we wanted to represent just the condition shown in the preceding
figure. Each process builds its own data that is to be sent to the root processes that are
identified with the rank zero:

from mpi4py import MPI

comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()
data = (rank+1)**2

Chapter 3

115

data = comm.gather(data, root=0)
if rank == 0:
 print ("rank = %s " %rank +\
 "...receiving data to other process")
 for i in range(1,size):
 data[i] = (i+1)**2
 value = data[i]
 print(" process %s receiving %s from process %s"\
 %(rank , value , i))

Finally, we run the code with a group of processes equal to five:

C:\>mpiexec -n 5 python gather.py

rank = 0 ...receiving data to other process

 process 0 receiving 4 from process 1

 process 0 receiving 9 from process 2

 process 0 receiving 16 from process 3

 process 0 receiving 25 from process 4

The root process zero receives data from the other four processes, as we represented in the
previous figure.

How it works…
We have n processes sending their data:

data = (rank+1)**2

If the rank of the process is zero, then the data is collected in an array:

if rank == 0:
 for i in range(1,size):
 data[i] = (i+1)**2
 value = data[i]
...

The gathering of data is given instead by the following function:

data = comm.gather(data, root=0)

Process-based Parallelism

116

There's more…
To collect data, mpi4py provides the following functions:

ff gathering to one task: comm.Gather, comm.Gatherv, and comm.gather

ff gathering to all tasks: comm.Allgather, comm.Allgatherv, and comm.
allgather

Collective communication using Alltoall
The Alltoall collective communication combines the scatter and gather functionality.
In mpi4py, there are three types of Alltoall collective communication:

ff comm .Alltoall(sendbuf, recvbuf): The all-to-all scatter/gather sends data
from all-to-all processes in a group

ff comm.Alltoallv(sendbuf, recvbuf): The all-to-all scatter/gather vector sends
data from all-to-all processes in a group, providing different amount of data and
displacements

ff comm.Alltoallw(sendbuf, recvbuf): Generalized all-to-all communication
allows different counts, displacements, and datatypes for each partner

How to do it…
In the following example, we'll see a mpi4py implementation of comm.Alltoall. We
consider a communicator group of processes, where each process sends and receives an
array of numerical data from the other processes defined in the group:

from mpi4py import MPI
import numpy

comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()

a_size = 1
senddata = (rank+1)*numpy.arange(size,dtype=int)
recvdata = numpy.empty(size*a_size,dtype=int)
comm.Alltoall(senddata,recvdata)

print(" process %s sending %s receiving %s"\
 %(rank , senddata , recvdata))

Chapter 3

117

We run the code with a communicator group of five processes and the output we get is as
follows:

C:\>mpiexec -n 5 python alltoall.py

process 0 sending [0 1 2 3 4] receiving [0 0 0 0 0]

process 1 sending [0 2 4 6 8] receiving [1 2 3 4 5]

process 2 sending [0 3 6 9 12] receiving [2 4 6 8 10]

process 3 sending [0 4 8 12 16] receiving [3 6 9 12 15]

process 4 sending [0 5 10 15 20] receiving [4 8 12 16 20]

How it works…
The comm.alltoall method takes the ith object from sendbuf of the task j and copies it
into the jth object of the recvbuf argument of the task i.

We could also figure out what happened using the following schema:

Alltotall

2 3 4

64

6 9 12

8

0 1

20

0 3

128

10 15 20

1640

0 5

0 0 0

43

6 8 10

5

0 0

21

2 4

129

12 16 20

1563

4 8

P0

P1

P2

P3

P4

The Alltoall collective communication

The following are our observations regarding the schema:

ff The process P0 contains the data array [0 1 2 3 4], where it assigns 0 to itself, 1 to
the process P1, 2 to the process P2, 3 to the process P3, and 4 to the process P4.

ff The process P1 contains the data array [0 2 4 6 8], where it assigns 0 to P0, 2 to
itself, 4 to the process P2, 6 to the process P3, and 8 to the process P4.

ff The process P2 contains the data array [0 3 6 9 12], where it assigns 0 to P0, 3 to
the process P1, 6 to itself, 9 to the process P3, and 12 to the process P4.

ff The process P3 contains the data array [0 4 8 12 16], where it assigns 0 to P0, 4 to
the process P1, 8 to the process P2, 12 to itself, and 16 to the process P4.

ff The process P4 contains the data array [0 5 10 15 20], where it assigns 0 to P0, 5 to
the process P1, 10 to the process P2, 15 to the process, and P3 and 20 to itself.

Process-based Parallelism

118

There's more…
All-to-all personalized communication is also known as total exchange. This operation is
used in a variety of parallel algorithms, such as the Fast Fourier transform, matrix transpose,
sample sort, and some parallel database join operations.

The reduction operation
Similar to comm.gather, comm.reduce takes an array of input elements in each process
and returns an array of output elements to the root process. The output elements contain the
reduced result.

In mpi4py, we define the reduction operation through the following statement:

comm.Reduce(sendbuf, recvbuf, rank_of_root_process, op = type_of_
reduction_operation)

We must note that the difference with the comm.gather statement resides in the op
parameter, which is the operation that you wish to apply to your data, and the mpi4py module
contains a set of reduction operations that can be used. Some of the reduction operations
defined by MPI are:

ff MPI.MAX: This returns the maximum element

ff MPI.MIN: This returns the minimum element

ff MPI.SUM: This sums up the elements

ff MPI.PROD: This multiplies all elements

ff MPI.LAND: This performs a logical operation and across the elements

ff MPI.MAXLOC: This returns the maximum value and the rank of the process
that owns it

ff MPI.MINLOC: This returns the minimum value and the rank of the process
that owns it

How to do it…
Now, we'll see how to implement a sum of an array of elements with the reduction operation
MPI.SUM, using the reduction functionality. Each process will manipulate an array of size
three. For array manipulation, we used the functions provided by the numpy Python module:

import numpy
import numpy as np
from mpi4py import MPI
comm = MPI.COMM_WORLD

Chapter 3

119

size = comm.size
rank = comm.rank

array_size = 3
recvdata = numpy.zeros(array_size,dtype=numpy.int)
senddata = (rank+1)*numpy.arange(a_size,dtype=numpy.int)
print(" process %s sending %s " %(rank , senddata))
comm.Reduce(senddata,recvdata,root=0,op=MPI.SUM)
print ('on task',rank,'after Reduce: data = ',recvdata)

It makes sense to run the code with a communicator group of three processes, that is, the
size of the manipulated array. Finally, we obtain the result as:

C:\>mpiexec -n 3 python reduction2.py
 process 2 sending [0 3 6]
on task 2 after Reduce: data = [0 0 0]
 process 1 sending [0 2 4]
on task 1 after Reduce: data = [0 0 0]
 process 0 sending [0 1 2]
on task 0 after Reduce: data = [0 6 12]

How it works…
To perform the reduction sum, we use the comm.Reduce statement and also identify with
rank zero, the root process, which will contain recvbuf, that represents the final result of the
computation:

comm.Reduce(senddata,recvdata,root=0,op=MPI.SUM)

Also, we must note that with the op=MPI.SUM option, we apply the sum operation to all of the
elements of the column array. To better understand how the reduction operates, let's take a
look at the following figure:

P0

P1

P2

0 1 2

20

0 3 6

4

sendbuf

recvbuf

P00 6 2

reduction

MPI.SUM

The reduction collective communication

Process-based Parallelism

120

The sending operation is as follows:

ff The process P0 sends the data array [0 1 2]

ff The process P1 sends the data array [0 2 4]

ff The process P2 sends the data array [0 3 6]

The reduction operation sums the ith elements of each task and then puts the result in the ith
element of the array in the root process P0.

For the receiving operation, the process P0 receives the data array [0 6 12].

How to optimize communication
An interesting feature that is provided by MPI concerns the virtual topologies. As already
noted, all the communication functions (point-to-point or collective) refer to a group of
processes. We have always used the MPI_COMM_WORLD group that includes all processes.
It assigns a rank 0 to n-1 for each process that belongs to a communicator of the size n.
However, MPI allows us to assign a virtual topology to a communicator. It defines a particular
assignment of labels to the different processes. A mechanism of this type permits you to
increase the execution performance. In fact, if you build a virtual topology, then every node
will communicate only with its virtual neighbor, optimizing the performance.

For example, if the rank was randomly assigned, a message could be forced to pass to many
other nodes before it reaches the destination. Beyond the question of performance, a virtual
topology makes sure that the code is more clear and readable. MPI provides two building
topologies. The first construct creates Cartesian topologies, while the latter creates any kind of
topologies. Specifically, in the second case, we must supply the adjacency matrix of the graph
that you want to build. We will deal only with Cartesian topologies, through which it is possible
to build several structures that are widely used: mesh, ring, toroid, and so on. The function
used to create a Cartesian topology is, as follows:

comm.Create_cart((number_of_rows,number_of_columns))

Here, number_of_rows and number_of_columns specify the rows and columns of the grid
that is to be made.

How to do it…
In the following example, we see how to implement a Cartesian topology of the size M×N. Also,
we define a set of coordinates to better understand how all the processes are disposed:

from mpi4py import MPI
import numpy as np

Chapter 3

121

UP = 0
DOWN = 1
LEFT = 2
RIGHT = 3
neighbour_processes = [0,0,0,0]
if __name__ == "__main__":
 comm = MPI.COMM_WORLD
 rank = comm.rank
 size = comm.size

 grid_rows = int(np.floor(np.sqrt(comm.size)))
 grid_column = comm.size // grid_rows

 if grid_rows*grid_column > size:
 grid_column -= 1
 if grid_rows*grid_column > size:
 grid_rows -= 1

 if (rank == 0) :
 print("Building a %d x %d grid topology:"\
 % (grid_rows, grid_column))

 cartesian_communicator = \
 comm.Create_cart(\
 (grid_rows, grid_column), \
 periods=(True, True), reorder=True)
 my_mpi_row, my_mpi_col = \
 cartesian_communicator.Get_coords\
 (cartesian_communicator.rank)

 neighbour_processes[UP], neighbour_processes[DOWN]\
 = cartesian_communicator.Shift(0, 1)
 neighbour_processes[LEFT], \
 neighbour_processes[RIGHT] = \
 cartesian_communicator.Shift(1, 1)
 print ("Process = %s \
row = %s \
column = %s ----> neighbour_processes[UP] = %s \
neighbour_processes[DOWN] = %s \
neighbour_processes[LEFT] =%s neighbour_processes[RIGHT]=%s" \
 %(rank, my_mpi_row, \
 my_mpi_col,neighbour_processes[UP], \

Process-based Parallelism

122

 neighbour_processes[DOWN], \
 neighbour_processes[LEFT] , \
 neighbour_processes[RIGHT]))

By running the script, we obtain the following result:

C:\>mpiexec -n 4 python virtualTopology.py

Building a 2 x 2 grid topology:

Process = 0 row = 0 column = 0 ---->

neighbour_processes[UP] = -1

neighbour_processes[DOWN] = 2

neighbour_processes[LEFT] =-1

neighbour_processes[RIGHT]=1

Process = 1 row = 0 column = 1 ---->

neighbour_processes[UP] = -1

neighbour_processes[DOWN] = 3

neighbour_processes[LEFT] =0

neighbour_processes[RIGHT]=-1

Process = 2 row = 1 column = 0 ---->

neighbour_processes[UP] = 0

neighbour_processes[DOWN] = -1

neighbour_processes[LEFT] =-1

neighbour_processes[RIGHT]=3

Process = 3 row = 1 column = 1 ---->

neighbour_processes[UP] = 1

neighbour_processes[DOWN] = -1

neighbour_processes[LEFT] =2

neighbour_processes[RIGHT]=-1

For each process, the output should read as: if neighbour_processes = -1, then it has
no topological proximity; otherwise, neighbour_processes shows the rank of the process
closely.

Chapter 3

123

How it works…
The resulting topology is a mesh of 2×2 (refer to the previous figure for a mesh
representation), the size of which is equal to the number of processes in the input,
that is, four:

grid_rows = int(np.floor(np.sqrt(comm.size)))
grid_column = comm.size // grid_rows
 if grid_rows*grid_column > size:
 grid_column -= 1
 if grid_rows*grid_column > size:
 grid_rows -= 1

Then, the Cartesian topology is built:

cartesian_communicator = comm.Create_cart(\
 (grid_rows, grid_column), periods=(False, False), reorder=True)
...

To find out the position of the ith process, we use the Get_coords()method in the following
form:

my_mpi_row, my_mpi_col = cartesian_communicator.Get_coords(cartesian_
communicator.rank)
For each process, in addition to their coordinates, we calculated
and got to know which processes are topologically closer. For
this purpose, we used the comm.Shift function comm.Shift (rank_
source,rank_dest)

In this form we have:

neighbour_processes[UP], neighbour_processes[DOWN] = \ cartesian_
communicator.Shift(0, 1)

neighbour_processes[LEFT], neighbour_processes[RIGHT] = \ cartesian_
communicator.Shift(1, 1)

Process-based Parallelism

124

The obtained topology is shown in the following figure:

P0

P2 P3

P1

The virtual mesh 2x2 topology

There's more…
To obtain a toroidal topology of the size M×N, we need the following lines of code:

cartesian_communicator = comm.Create_cart((grid_rows, grid_column),
periods=(True, True), reorder=True)

This corresponds to the following output:

C:\>mpiexec -n 4 python VirtualTopology.py
Building a 2 x 2 grid topology:
Process = 0 row = 0 column = 0 ---->
neighbour_processes[UP] = 2
neighbour_processes[DOWN] = 2
neighbour_processes[LEFT] =1
neighbour_processes[RIGHT]=1
Process = 1 row = 0 column = 1 ---->
neighbour_processes[UP] = 3
neighbour_processes[DOWN] = 3
neighbour_processes[LEFT] =0
neighbour_processes[RIGHT]=0
Process = 2 row = 1 column = 0 ---->
neighbour_processes[UP] = 0
neighbour_processes[DOWN] = 0
neighbour_processes[LEFT] =3 neighbour_processes[RIGHT]=3
Process = 3 row = 1 column = 1 ---->
neighbour_processes[UP] = 1
neighbour_processes[DOWN] = 1
neighbour_processes[LEFT] =2
neighbour_processes[RIGHT]=2

Chapter 3

125

Also, it covers the topology represented here:

P0

P2 P3

P1

The virtual toroidal 2x2 topology

127

4
Asynchronous
Programming

In this chapter, we will cover the following recipes:

ff How to use the concurrent.futures Python module

ff Event loop management with Asyncio

ff Handling coroutines with Asyncio

ff Task manipulation with Asyncio

ff Dealing with Asyncio and Futures

Introduction
With the sequential and parallel execution model, there is a third model, called the
asynchronous model, that is of fundamental importance to us along with the concept of event
programming. The execution model of asynchronous activities can be implemented using a
single stream of main control, both in uniprocessor systems and multiprocessor systems.

Asynchronous Programming

128

In the asynchronous model of a concurrent execution, various tasks intersect with the
timeline, and all of this happens under the action of a single flow of control (single-threaded).
The execution of a task can be suspended and then resumed, but this alternates the time of
other tasks. The following figure expresses this concept in a clear manner:

Task 1 Task 2 Task 3

Time

Asynchronous programming model

As you can see, the tasks (each with a different color) are interleaved with one another, but
they are in a single thread of control; this implies that when one task is in execution, the
other tasks are not. A key difference between the multithreaded programming model and the
single-threaded asynchronous concurrent model is that in the first case, the operating system
decides on the timeline, whether to suspend the activity of a thread and start another, while
in the second case, the programmer must assume that a thread may be suspended and
replaced with another at any time.

The programmer can program a task as a sequence of smaller steps that are executed
intermittently; so if a task uses the output of another, the dependent task must be written to
accept its input.

Using the concurrent.futures Python
modules

With the release of Python 3.2, the concurrent.future module was introduced, which
allows us to manage concurrent programming tasks, such as process and thread pooling,
nondeterministic execution flows, and processes and thread synchronization.

This package is built by the following classes:

ff concurrent.futures.Executor: This is an abstract class that provides methods
to execute calls asynchronously.

ff submit (function ,argument): This schedules the execution of a function
(called callable) on the arguments.

Chapter 4

129

ff map (function,argument): This executes the function on arguments in an
asynchronous mode.

ff shutdown (Wait = True): This signals the executor to free any resource.

ff concurrent.futures.Future: This encapsulates the asynchronous execution
of a callable function. Future objects are instantiated by submitting tasks (functions
with optional parameters) to executors.

Executors are abstractions that are accessed through their subclasses: thread or process
ExecutorPools. In fact, instantiation of threads and process is a resource-demanding task,
so it is better to pool these resources and use them as repeatable launchers or executors
(hence, the executors concept) for parallel or concurrent tasks.

Dealing with the process and thread pool
A thread or process pool (also called pooling) indicates a software manager that is used to
optimize and simplify the use of threads and/or processes within a program. Through the
pooling, you can submit the task (or tasks) that are to be executed to the pooler. The pool
is equipped with an internal queue of tasks that are pending and a number of threads or
processes that execute them. A recurring concept in pooling is reuse: a thread (or process) is
used several times for different tasks during its lifecycle. It decreases the overhead of creating
and increasing the performance of the program that takes advantage of the pooling. Reuse is
not a rule, but it is one of the main reasons that lead a programmer to use pooling in his/her
application.

Task Queue

Task Completed

POOL

Pooling management

Asynchronous Programming

130

Getting ready
The current.Futures module provides two subclasses of the Executor class,
respectively, which manipulates a pool of threads and a pool of processes asynchronously.
The two subclasses are as follows:

ff concurrent.futures.ThreadPoolExecutor(max_workers)

ff concurrent.futures.ProcessPoolExecutor(max_workers)

The max_workers parameter identifies the max number of workers that execute the call
asynchronously.

How to do it…
The following example shows you the functionality of process and thread pooling. The task
to be performed is that we have a list of numbers from one to 10, number_list. For each
element of the list, a count is made up to 10,000,000 (just to waste time) and then the latter
number is multiplied with the ith element of the list.

By doing this, the following cases are evaluated:

ff Sequential execution

ff A thread pool with 5 workers

Consider the following code:

#
Concurrent.Futures Pooling - Chapter 4 Asynchronous Programming
#

import concurrent.futures
import time

number_list = [1,2,3,4,5,6,7,8,9,10]

def evaluate_item(x):
 #count...just to make an operation
 result_item = count(x)
 #print the input item and the result
 print ("item " + str(x) + " result " + str(result_item))

def count(number) :
 for i in range(0,10000000):
 i=i+1
 return i*number

Chapter 4

131

if __name__ == "__main__":

##Sequential Execution
 start_time = time.clock()
 for item in number_list:
 evaluate_item(item)
 print ("Sequential execution in " + \
 str(time.clock() - start_time), "seconds")

 ##Thread pool Execution
 start_time_1 = time.clock()
 with concurrent.futures.ThreadPoolExecutor(max_workers=5)\
 as executor:
 for item in number_list:
 executor.submit(evaluate_item, item)
 print ("Thread pool execution in " + \
 str(time.clock() - start_time_1), "seconds")

 ##Process pool Execution
 start_time_2 = time.clock()
 with concurrent.futures.ProcessPoolExecutor(max_workers=5)\
 as executor:
 for item in number_list:
 executor.submit(evaluate_item, item)
 print ("Process pool execution in " + \
 str(time.clock() - start_time_2), "seconds")

After running the code, we have the following results with the execution time:

C:\Python CookBook\Chapter 4- Asynchronous Programming\ >python
Process_pool_with_concurrent_futures.py
item 1 result 10000000
item 2 result 20000000
item 3 result 30000000
item 4 result 40000000
item 5 result 50000000
item 6 result 60000000
item 7 result 70000000
item 8 result 80000000
item 9 result 90000000
item 10 result 100000000
Sequential execution in 17.241238674183425 seconds

Asynchronous Programming

132

item 4 result 40000000
item 2 result 20000000
item 1 result 10000000
item 5 result 50000000
item 3 result 30000000
item 7 result 70000000
item 6 result 60000000
item 8 result 80000000
item 10 result 100000000
item 9 result 90000000
Thread pool execution in 17.14648646290675 seconds

item 3 result 30000000
item 1 result 10000000
item 2 result 20000000
item 4 result 40000000
item 5 result 50000000
item 6 result 60000000
item 7 result 70000000
item 9 result 90000000
item 8 result 80000000
item 10 result 100000000
Process pool execution in 9.913172716938618 seconds

How it works…
We build a list of numbers stored in number_list and for each element in the list, we
operate the counting procedure until 100,000,000 iterations. Then, we multiply the resulting
value for 100,000,000:

def evaluate_item(x):
 #count...just to make an operation
 result_item = count(x)

def count(number) :
 for i in range(0,10000000):
 i=i+1
 return i*number

Chapter 4

133

In the main program, we execute the task that will be performed in a sequential mode:

if __name__ == "__main__":
 for item in number_list:
 evaluate_item(item)

Also, in a parallel mode, we will use the concurrent.futures module's pooling capability
for a thread pool:

 with concurrent.futures.ThreadPoolExecutor(max_workers=5)\
 as executor:
 for item in number_list:
 executor.submit(evaluate_item, item)

The ThreadPoolExecutor executes the given task using one of its internally pooled
threads. It manages five threads working on its pool. Each thread takes a job out from the
pool and executes it. When the job is executed, it takes the next job to be processed from the
thread pool.

When all the jobs are processed, the execution time is printed:

print ("Thread pool execution in " + \
 str(time.clock() - start_time_1), "seconds")

For the process pooling implemented by the ProcessPoolExecutor class, we have:

 with concurrent.futures.ProcessPoolExecutor(max_workers=5)\
 as executor:
 for item in number_list:
 executor.submit(evaluate_item, item)

Like ThreadPoolExecutor, the ProcessPoolExecutor class is an executor
subclass that uses a pool of processes to execute calls asynchronously. However, unlike
ThreadPoolExecutor, the ProcessPoolExecutor uses the multiprocessing module,
which allows us to outflank the global interpreter lock and obtain a shorter execution time.

There's more…
The pooling is used in almost all server applications, where there is a need to handle more
simultaneous requests from any number of clients. Many other applications, however, require
that each task should be performed instantly or you have more control over the thread that
executes it. In this case, pooling is not the best choice.

Asynchronous Programming

134

Event loop management with Asyncio
The Python module Asyncio provides facilities to manage events, coroutines, tasks and
threads, and synchronization primitives to write concurrent code. The main components and
concepts of this module are:

ff An event loop: The Asyncio module allows a single event loop per process

ff Coroutines: This is the generalization of the subroutine concept. Also, a coroutine
can be suspended during the execution so that it waits for external processing (some
routine in I/O) and returns from the point at which it had stopped when the external
processing was done.

ff Futures: This defines the Future object, such as the concurrent.futures
module that represents a computation that has still not been accomplished.

ff Tasks: This is a subclass of Asyncio that is used to encapsulate and manage
coroutines in a parallel mode.

In this recipe, the focus is on handling events. In fact, in the context of asynchronous
programming, events are very important since they are inherently asynchronous.

What is an event loop
Within a computational system, the entity that can generate events is called an event source,
while the entity that negotiates to manage an event is called the event handler. Sometimes,
there may be a third entity called an event loop. It realizes the functionality to manage all the
events in a computational code. More precisely, the event loop acts cyclically during the whole
execution of the program and keeps track of events that have occurred within a data structure
to queue and then process them one at a time by invoking the event handler if the main
thread is free. Finally, we report a pseudocode of an event loop manager:

while (1) {
events = getEvents();
for (e in events)
processEvent(e);
}

All the events in the while loop are caught and then processed by the event handler. The
handler that processes an event is the only activity that takes place in the system. When the
handler has ended, the control is passed on to the next event that is scheduled.

Chapter 4

135

Getting ready
Asyncio provides the following methods that are used to manage an event loop:

ff loop = get_event_loop(): Using this, you can get the event loop for the current
context.

ff loop.call_later(time_delay,callback,argument): This arranges for the
callback that is to be called after the given time_delay seconds.

ff loop.call_soon(callback,argument): This arranges for a callback that is to
be called as soon as possible. The callback is called after call_soon() returns and
when the control returns to the event loop.

ff loop.time(): This returns the current time, as a float value, according to the event
loop's internal clock.

ff asyncio.set_event_loop(): This sets the event loop for the current context to
loop.

ff asyncio.new_event_loop(): This creates and returns a new event loop object
according to this policy's rules.

ff loop.run_forever(): This runs until stop() is called.

How to do it…
In this example, we show you how to use the loop event statements provided by the Asyncio
library to build an application that works in an asynchronous mode. Let's consider the
following code:

import asyncio
import datetime
import time

def function_1(end_time, loop):
 print ("function_1 called")
 if (loop.time() + 1.0) < end_time:
 loop.call_later(1, function_2, end_time, loop)
 else:
 loop.stop()

Asynchronous Programming

136

def function_2(end_time, loop):
 print ("function_2 called ")
 if (loop.time() + 1.0) < end_time:
 loop.call_later(1, function_3, end_time, loop)
 else:
 loop.stop()

def function_3(end_time, loop):
 print ("function_3 called")
 if (loop.time() + 1.0) < end_time:
 loop.call_later(1, function_1, end_time, loop)
 else:
 loop.stop()

def function_4(end_time, loop):
 print ("function_5 called")
 if (loop.time() + 1.0) < end_time:
 loop.call_later(1, function_4, end_time, loop)
 else:
 loop.stop()

loop = asyncio.get_event_loop()

end_loop = loop.time() + 9.0
loop.call_soon(function_1, end_loop, loop)
#loop.call_soon(function_4, end_loop, loop)

loop.run_forever()
loop.close()

The output of the preceding code is as follows:

C:\Python Parallel Programming INDEX\Chapter 4- Asynchronous
Programming >python asyncio_loop.py
function_1 called
function_2 called
function_3 called
function_1 called
function_2 called
function_3 called
function_1 called
function_2 called
function_3 called

Chapter 4

137

How it works…
In this example, we defined three asynchronous tasks, where each task calls the subsequent
in the order, as shown in the following figure:

Task 1 Task 2 Task 3

Time

Task execution in the example

To accomplish this, we need to capture the event loop:

loop = asyncio.get_event_loop()

Then, we schedule the first call to function_1() by the call_soon construct:

end_loop = loop.time() + 9.0
loop.call_soon(function_1, end_loop, loop)

Let's note the definition of function_1:

def function_1(end_time, loop):
 print ("function_1 called")
 if (loop.time() + 1.0) < end_time:
 loop.call_later(1, function_2, end_time, loop)
 else:
 loop.stop()

This defines the asynchronous behavior of the application with the following arguments:

ff end_time: This defines the upper time limit within function_1 and makes the call
to function_2 through the call_later method

ff loop: This is the loop event that was captured previously with the get_event_
loop() method

Asynchronous Programming

138

The task of function_1 is pretty simple, which is to print its name, but it could also be more
computationally intensive:

 print ("function_1 called")

After performing the task, it is compared to loop.time () with the total length of the run;
the total number of the cycles is 12 and if it is not passed this time, then it is executed with
the call_later method with a delay of 1 second:

 if (loop.time() + 1.0) < end_time:
 loop.call_later(1, function_2, end_time, loop)
 else:
 loop.stop()

For funcion_2() and function_3(), the operation is the same.

If the running time expires, then the loop event must end:

loop.run_forever()
loop.close()

Handling coroutines with Asyncio
We saw, in the course of the various examples presented, that when a program becomes
very long and complex, it is convenient to divide it into subroutines, each of which realizes a
specific task for which it implements a suitable algorithm. The subroutine cannot be executed
independently, but only at the request of the main program, which is then responsible for
coordinating the use of subroutines. Coroutines are a generalization of the subroutine. Like a
subroutine, the coroutine computes a single computational step, but unlike subroutines, there
is no main program that can be used to coordinate the results. This is because the coroutines
link themselves together to form a pipeline without any supervising function responsible for
calling them in a particular order. In a coroutine, the execution point can be suspended and
resumed later after keeping track of its local state in the intervening time. Having a pool of
coroutines, it is possible to interleave their computations: run the first one until it yields the
control back, then run the second, and so on down the line.

The control component of the interleave is the even loop, which was explained in the previous
recipe. It keeps track of all the coroutines and schedules when they will be executed.

The other important aspects of coroutines are, as follows:

ff Coroutines allow multiple entry points that can be yielded multiple times

ff Coroutines can transfer the execution to any other coroutines

Chapter 4

139

The term "yield" is used to describe a coroutine that pauses and passes the control flow to
another coroutine. Since coroutines can pass values along with the control flow to another
coroutine, the phrase "yielding a value" is used to describe the yielding and passing of a value
to the coroutine that receives the control.

Getting ready
To define a coroutine with the Asyncio module, we simply use an annotation:

import asyncio
@asyncio.coroutine
def coroutine_function(function_arguments) :
 # DO_SOMETHING

How to do it…
In this example, we will see how to use the coroutine mechanism of Asyncio to simulate
a finite state machine of five states. A finite state machine or automaton (FSA) is a
mathematical model that is widely used not only in engineering disciplines, but also in
sciences, such as mathematics and computer science. The automata through which we
want to simulate the behavior is as follows:

1

S
0

S
1

S
2

S
3

S
4

1

1

1

0

0

0

0

Finite state machine

Asynchronous Programming

140

In the preceding diagram, we have indicated with S0, S1, S2, S3, and S4 the states of the
system. Here, 0 and 1 are the values for which the automata can pass from one state to the
next (this operation is called a transition). So for example, the state S0 can be passed to the
state S1 only for the value 1 and S0 can be passed to the state S2 only for the value 0. The
Python code that follows, simulates a transition of the automaton from the state S0, the so-
called Start State, up to the state S4, the End State:

#Asyncio Finite State Machine
	
import asyncio
import time
from random import randint

@asyncio.coroutine
def StartState():
 print ("Start State called \n")
 input_value = randint(0,1)
 time.sleep(1)
 if (input_value == 0):
 result = yield from State2(input_value)
 else :
 result = yield from State1(input_value)
 print("Resume of the Transition : \nStart State calling "\
 + result)

@asyncio.coroutine
def State1(transition_value):
 outputValue = str(("State 1 with transition value = %s \n"\
 %(transition_value)))
 input_value = randint(0,1)
 time.sleep(1)
 print("...Evaluating...")
 if (input_value == 0):
 result = yield from State3(input_value)
 else :
 result = yield from State2(input_value)
 result = "State 1 calling " + result
 return (outputValue + str(result))

@asyncio.coroutine
def State2(transition_value):

Chapter 4

141

 outputValue = str(("State 2 with transition value = %s \n" \
 %(transition_value)))
 input_value = randint(0,1)
 time.sleep(1)
 print("...Evaluating...")
 if (input_value == 0):
 result = yield from State1(input_value)
 else :
 result = yield from State3(input_value)
 result = "State 2 calling " + result
 return (outputValue + str(result))

@asyncio.coroutine
def State3(transition_value):
 outputValue = str(("State 3 with transition value = %s \n" \
 %(transition_value)))
 input_value = randint(0,1)
 time.sleep(1)
 print("...Evaluating...")
 if (input_value == 0):
 result = yield from State1(input_value)
 else :
 result = yield from EndState(input_value)
 result = "State 3 calling " + result
 return (outputValue + str(result))

@asyncio.coroutine
def EndState(transition_value):
 outputValue = str(("End State with transition value = %s \n"\
 %(transition_value)))
 print("...Stop Computation...")
 return (outputValue)

if __name__ == "__main__":
 print("Finite State Machine simulation with Asyncio Coroutine")
 loop = asyncio.get_event_loop()
 loop.run_until_complete(StartState())

After running the code, we have an output similar to this:

C:\Python CookBook\Chapter 4- Asynchronous Programming\codes - Chapter
4>python asyncio_state_machine.py

Asynchronous Programming

142

Finite State Machine simulation with Asyncio Coroutine
Start State called
...Evaluating...
...Evaluating...
...Evaluating...
...Evaluating...
...Evaluating...
...Evaluating...
...Evaluating...
...Evaluating...
...Evaluating...
...Evaluating...
...Evaluating...
...Evaluating...
...Stop Computation...
Resume of the Transition :
Start State calling State 1 with transition value = 1
State 1 calling State 3 with transition value = 0
State 3 calling State 1 with transition value = 0
State 1 calling State 2 with transition value = 1
State 2 calling State 3 with transition value = 1
State 3 calling State 1 with transition value = 0
State 1 calling State 2 with transition value = 1
State 2 calling State 1 with transition value = 0
State 1 calling State 3 with transition value = 0
State 3 calling State 1 with transition value = 0
State 1 calling State 2 with transition value = 1
State 2 calling State 3 with transition value = 1
State 3 calling End State with transition value = 1

How it works…
Each state of the automata has been defined with the following annotation:

@asyncio.coroutine

For example, the state S0 is defined as:

@asyncio.coroutine
def StartState():
 print ("Start State called \n")
 input_value = randint(0,1)

Chapter 4

143

 time.sleep(1)
 if (input_value == 0):
 result = yield from State2(input_value)
 else :
 result = yield from State1(input_value)

The transition to the next state is determined by input_value, which is defined by the
randint(0,1) function of Python's module random. This function provides randomly the
value 0 or 1. In this manner, it randomly determines to which state the finite state machine
will be passed:

input_value = randint(0,1)

After determining the value at which state the finite state machine will be passed, the
coroutine calls the next coroutine using the command yield from:

if (input_value == 0):
 result = yield from State2(input_value)
 else :
 result = yield from State1(input_value)

The variable result is the value that each coroutine returns. It is a string, and by the end of the
computation, we can reconstruct the transition from the initial state of the automation, the
Start State, up to the final state, the End State.

The main program starts the evaluation inside the event loop as:

if __name__ == "__main__":
 print("Finite State Machine simulation with Asyncio Coroutine")
 loop = asyncio.get_event_loop()
 loop.run_until_complete(StartState())

Task manipulation with Asyncio
Asyncio is designed to handle asynchronous processes and concurrent task executions on an
event loop. It also provides us with the asyncio.Task() class for the purpose of wrapping
coroutines in a task. Its use is to allow independently running tasks to run concurrently with
other tasks on the same event loop. When a coroutine is wrapped in a task, it connects the
task to the event loop and then runs automatically when the loop is started, thus providing a
mechanism to automatically drive the coroutine.

Asynchronous Programming

144

Getting ready
The Asyncio module provides us with the asyncio.Task(coroutine) method to handle
computations with tasks. It schedules the execution of a coroutine. A task is responsible
for the execution of a coroutine object in an event loop. If the wrapped coroutine yields
from a future, the task suspends the execution of the wrapped coroutine and waits for the
completion of the future.

When the future is complete, the execution of the wrapped coroutine restarts with the result
or the exception of the future. Also, we must note that an event loop only runs one task at a
time. Other tasks may run parallelly if other event loops run in different threads. While a task
waits for the completion of a future, the event loop executes a new task.

How to do it…
In the following sample code, we've shown you how three mathematical functions can be
executed concurrently by the Asyncio.Task() statement:

"""
Asyncio using Asyncio.Task to execute three math function in parallel
"""
import asyncio

@asyncio.coroutine
def factorial(number):
 f = 1
 for i in range(2, number+1):
 print("Asyncio.Task: Compute factorial(%s)" % (i))
 yield from asyncio.sleep(1)
 f *= i
 print("Asyncio.Task - factorial(%s) = %s" % (number, f))

@asyncio.coroutine
def fibonacci(number):
 a, b = 0, 1
 for i in range(number):
 print("Asyncio.Task: Compute fibonacci (%s)" % (i))
 yield from asyncio.sleep(1)
 a, b = b, a + b
 print("Asyncio.Task - fibonacci(%s) = %s" % (number, a))

Chapter 4

145

@asyncio.coroutine
def binomialCoeff(n, k):
 result = 1
 for i in range(1, k+1):
 result = result * (n-i+1) / i
 print("Asyncio.Task: Compute binomialCoeff (%s)" % (i))
 yield from asyncio.sleep(1)
 print("Asyncio.Task - binomialCoeff(%s , %s) = \
 %s" % (n,k,result))

if __name__ == "__main__":
 tasks = [asyncio.Task(factorial(10)),
 asyncio.Task(fibonacci(10)),
 asyncio.Task(binomialCoeff(20,10))]
 loop = asyncio.get_event_loop()
 loop.run_until_complete(asyncio.wait(tasks))
 loop.close()

The result of the preceding code is:

C:\ Python CookBook \Chapter 4- Asynchronous Programming\codes -
Chapter 4> python asyncio_Task.py
Asyncio.Task: Compute factorial(2)
Asyncio.Task: Compute fibonacci (0)
Asyncio.Task: Compute binomialCoeff (1)
Asyncio.Task: Compute factorial(3)
Asyncio.Task: Compute fibonacci (1)
Asyncio.Task: Compute binomialCoeff (2)
Asyncio.Task: Compute factorial(4)
Asyncio.Task: Compute fibonacci (2)
Asyncio.Task: Compute binomialCoeff (3)
Asyncio.Task: Compute factorial(5)
Asyncio.Task: Compute fibonacci (3)
Asyncio.Task: Compute binomialCoeff (4)
Asyncio.Task: Compute factorial(6)
Asyncio.Task: Compute fibonacci (4)
Asyncio.Task: Compute binomialCoeff (5)
Asyncio.Task: Compute factorial(7)
Asyncio.Task: Compute fibonacci (5)
Asyncio.Task: Compute binomialCoeff (6)
Asyncio.Task: Compute factorial(8)
Asyncio.Task: Compute fibonacci (6)
Asyncio.Task: Compute binomialCoeff (7)
Asyncio.Task: Compute factorial(9)
Asyncio.Task: Compute fibonacci (7)

Asynchronous Programming

146

Asyncio.Task: Compute binomialCoeff (8)
Asyncio.Task: Compute factorial(10)
Asyncio.Task: Compute fibonacci (8)
Asyncio.Task: Compute binomialCoeff (9)
Asyncio.Task - factorial(10) = 3628800
Asyncio.Task: Compute fibonacci (9)
Asyncio.Task: Compute binomialCoeff (10)
Asyncio.Task - fibonacci(10) = 55
Asyncio.Task - binomialCoeff(20 , 10) = 184756.0

How it works…
In this example, we defined three coroutines, factorial, fibonacci, and
binomialCoeff each of which, as explained previously, is identified by the @asyncio.
coroutine decorator:

@asyncio.coroutine
def factorial(number):
do Something

@asyncio.coroutine
def fibonacci(number):
do Something

@asyncio.coroutine
def binomialCoeff(n, k):
do Something

To perform these three tasks parallelly, we first put them in the list tasks, in the following
manner:

if __name__ == "__main__":
 tasks = [asyncio.Task(factorial(10)),
 asyncio.Task(fibonacci(10)),
 asyncio.Task(binomialCoeff(20,10))]

Then, we get the event_loop:

loop = asyncio.get_event_loop()

Chapter 4

147

Next, we run the tasks:

 loop.run_until_complete(asyncio.wait(tasks))

Here, asyncio.wait statement (tasks) waits for the given coroutines to complete.

In the last statement, we close the event loop:

 loop.close()

Dealing with Asyncio and Futures
Another key component of the Asyncio module is the Future class. This is very similar to
concurrent.futures.Futures, but of course, it is adapted in the main mechanism of
Asyncio's event loop. The asyncio.Future class represents a result (but can also be an
exception) that is not yet available. It therefore represents an abstraction of something that is
yet to be accomplished.

Callbacks that have to process any results are in fact added to the instances of this class.

Getting ready
To manage an object Future in Asyncio, we must declare the following:

import asyncio
future = asyncio.Future()

The basic methods of this class are:

ff cancel(): This cancels the future and schedules callbacks

ff result(): This returns the result that this future represents

ff exception(): This returns the exception that was set on this future

ff add_done_callback(fn): This adds a callback that is to be run when future is
executed

ff remove_done_callback(fn): This removes all instances of a callback from the
"call when done" list

ff set_result(result): This marks the future as complete and sets its result

ff set_exception(exception): This marks the future as complete and sets an
exception

Asynchronous Programming

148

How to do it…
The following example shows you how to use the Futures class for the management of two
coroutines first_coroutine and second_coroutine that perform the tasks, such as the
sum of the first n integers and second the factorial of n. The code is as follows:

"""
Asyncio.Futures - Chapter 4 Asynchronous Programming
"""
import asyncio
import sys

#SUM OF N INTEGERS
@asyncio.coroutine
def first_coroutine(future,N):
 count = 0
 for i in range(1,N+1):
 count=count + i
 yield from asyncio.sleep(4)
 future.set_result("first coroutine (sum of N integers) result = "\
 + str(count))

#FACTORIAL(N)
@asyncio.coroutine
def second_coroutine(future,N):
 count = 1
 for i in range(2, N+1):
 count *= i
 yield from asyncio.sleep(3)
 future.set_result("second coroutine (factorial) result = "\
 + str(count))

def got_result(future):
 print(future.result())

Chapter 4

149

if __name__ == "__main__":
 N1 = int(sys.argv[1])
 N2 = int(sys.argv[2])

 loop = asyncio.get_event_loop()
 future1 = asyncio.Future()
 future2 = asyncio.Future()

 tasks = [
 first_coroutine(future1,N1),
 second_coroutine(future2,N2)]

 future1.add_done_callback(got_result)
 future2.add_done_callback(got_result)

 loop.run_until_complete(asyncio.wait(tasks))
 loop.close()

The following output is obtained after multiple runs:

C:\Python CookBook\Chapter 4- Asynchronous Programming\codes - Chapter
4>python Asyncio_future.py 1 1
first coroutine (sum of N integers) result = 1
second coroutine (factorial) result = 1

C:\Python CookBook\Chapter 4- Asynchronous Programming\codes - Chapter
4>python Asyncio_future.py 2 2
first coroutine (sum of N integers) result = 3
second coroutine (factorial) result = 2

C:\ Python CookBook\Chapter 4- Asynchronous Programming\codes -
Chapter 4>python Asyncio_future.py 3 3
first coroutine (sum of N integers) result = 6
second coroutine (factorial) result = 6

C:\ Python CookBook\Chapter 4- Asynchronous Programming\codes -
Chapter 4>python Asyncio_future.py 5 5
first coroutine (sum of N integers) result = 15
second coroutine (factorial) result = 120

Asynchronous Programming

150

How it works…
In the main program, we define the objects' future to associate the coroutines:

if __name__ == "__main__":

future1 = asyncio.Future()
future2 = asyncio.Future()

While defining the tasks, we pass the object future as an argument of coroutines:

tasks = [first_coroutine(future1,N1),
 second_coroutine(future2,N2)]

Finally, we add a callback that is to be run when the future gets executed:

future1.add_done_callback(got_result)
future2.add_done_callback(got_result)

Here, got_result is a function that prints the final result of the future:

def got_result(future):
 print(future.result())

In the coroutine wherein we pass the object future as an argument, after the computation, we
set a sleep time of 3 seconds for the first coroutine and 4 seconds for the second coroutine:

yield from asyncio.sleep(sleep_time)

Then, we mark the future as complete and set its result with the help of future.set_
result().

There's more…
Swapping the sleep time between the coroutines, we invert the output results (we first do that
for the second coroutine output):

C:\Python CookBook\Chapter 4- Asynchronous Programming\codes - Chapter
4>python Asyncio_future.py 1 10
second coroutine (factorial) result = 3628800
first coroutine (sum of N integers) result = 1

151

5
Distributed Python

In this chapter, we will cover the following recipes:

ff Using Celery to distribute tasks

ff How to create a task with Celery

ff Scientific computing with SCOOP

ff Handling map functions with SCOOP

ff Remote method invocation with Pyro4

ff Chaining objects with Pyro4

ff Developing a client-server application with Pyro4

ff Communicating sequential processes with PyCSP

ff Using MapReduce with Disco

ff A remote procedure call with RPyC

Introduction
The basic idea of distributed computing is to break each workload into an arbitrary number
of tasks, usually indicated with the name, into reasonable pieces for which a computer in
a distributed network will be able to finish and return the results flawlessly. In distributed
computing, there is the absolute certainty that the machines on your network are always
available (latency difference, unpredictable crash or network computers, and so on). So, you
need a continuous monitoring architecture.

Distributed Python

152

The fundamental problem that arises from the use of this kind of technology is mainly
focused on the proper management of traffic (that is devoid of errors both in transmission
and reception) of any kind (data, jobs, commands, and so on). Further, a problem stems from
a fundamental characteristic of distributed computing: the coexistence in the network of
machines that support different operating systems which are often incompatible with others.
In fact, the need to actually use the multiplicity of resources in a distributed environment has,
over time, led to the identification of different calculation models. Their goal is essentially
to provide a framework for the description of the cooperation between the processes of a
distributed application. We can say that, basically, the different models are distinguished
according to a greater or lesser capacity to use the opportunities provided by the distribution.
The most widely used model is the client-server model. It allows processes located on
different computers to cooperate in real time through the exchange of messages, thereby
achieving a significant improvement over the previous model, which requires the transfer
of all the files, in which computations are performed on the data offline. The client-server
model is typically implemented through remote procedure calls, which extend the scope of a
local call, or through the paradigm of distributed objects (Object-Oriented Middleware).This
chapter will then present some of the solutions proposed by Python for the implementation of
these computing architectures. We will then describe the libraries that implement distributed
architectures using the OO approach and remote calls, such as Celery, SCOOP, Pyro4, and
RPyC, but also using different approaches, such as PyCSP and Disco, which are the Python
equivalent of the MapReduce algorithm.

Using Celery to distribute tasks
Celery is a Python framework used to manage a distributed task, following the Object-Oriented
Middleware approach. Its main feature consists of handling many small tasks and distributing
them on a large number of computational nodes. Finally, the result of each task will then be
reworked in order to compose the overall solution.

To work with Celery, we need the following components:

ff The Celery module (of course!!)

ff A message broker. This is a Celery-independent software component, the middleware,
used to send and receive messages to distributed task workers. A message broker
is also known as a message middleware. It deals with the exchange of messages in
a communication network. The addressing scheme of this type of middleware is no
longer of the point-to-point type but is a message-oriented addressing scheme. The
best known is the Publish/Subscribe paradigm.

Chapter 5

153

Messages awaiting dispatch
to a consumer

Broker will only dispatch
more messages when the
consumer has space

Broker

SubcribePublish

Producer

Producer waits until notified
by the broker it has more

Consumer sends an ack when
its consumed

Consumer

The message broker architecture

Celery supports many types of message brokers—the most complete of which are RabbitMQ
and Redis.

How to do it…
To install Celery, we use the pip installer. In Command Prompt, just type the following:

pip install celery

After this, we must install the message broker. There are several choices available for us to
do this, but in our examples, we use RabbitMQ, which is a message-oriented middleware
(also called broker messaging), that implements the Advanced Message Queuing Protocol
(AMQP). The RabbitMQ server is written in Erlang, and it is based on the Open Telecom
Platform (OTP) framework for the management of clustering and failover. To install RabbitMQ,
download and run Erlang (http://www.erlang.org/download.html), and then just
download and run the RabbitMQ installer (http://www.rabbitmq.com/download.html).
It takes a few minutes to download and will set up RabbitMQ and run it as a service with a
default configuration.

Finally, we install Flower (http://flower.readthedocs.org), which is a web-based tool
used to monitor tasks (running progress, task details, and graphs and stats).

To install it, just type the following from Command Prompt:

pip install –U flower

http://www.erlang.org/download.html
http://www.rabbitmq.com/download.html
http://flower.readthedocs.org

Distributed Python

154

Then, we can verify the Celery installation. In Command Prompt, just type the following:

C:\celery –-version

After this, the text shown as follows should appear:

3.1.18 (Cipater)

The usage of Celery is pretty simple, as shown:

Usage: celery <command> [options]

Here, the options are as shown:

Options:
 -A APP, --app=APP app instance to use (e.g. module.attr_name)
 -b BROKER, --broker=BROKER
 url to broker. default is 'amqp://guest@
localhost//'
 --loader=LOADER name of custom loader class to use.
 --config=CONFIG Name of the configuration module
 --workdir=WORKING_DIRECTORY
 Optional directory to change to after
detaching.
 -C, --no-color
 -q, --quiet
 --version show program's version number and exit
 -h, --help show this help message and exit

See also
ff For more complete details about the Celery installation procedure, you can visit

www.celeryproject.com

How to create a task with Celery
In this recipe, we'll show you how to create and call a task using the Celery module. Celery
provides the following methods that make a call to a task:

ff apply_async(args[, kwargs[, …]]): This task sends a task message

ff delay(*args, **kwargs): This is a shortcut to send a task message, but does
not support execution options

www.celeryproject.com

Chapter 5

155

The delay method is better to use because it can be called as a regular function:

task.delay(arg1, arg2, kwarg1='x', kwarg2='y')

While using apply_async you should write:

task.apply_async (args=[arg1, arg2] kwargs={'kwarg1': 'x','kwarg2':
'y'})

How to do it…
To perform this simple task, we implement the following two simple scripts:

###
addTask.py :Executing a simple task
###

from celery import Celery

app = Celery('addTask',broker='amqp://guest@localhost//')

@app.task
def add(x, y):
 return x + y
while the second script is :

###
#addTask.py : RUN the AddTask example with
###

import addTask

if __name__ == '__main__':
 result = addTask.add.delay(5,5)

We must note again that the RabbitMQ service starts automatically on our server upon
installation. So, to execute the Celery worker server, we simply type the following command
from Command Prompt:

celery -A addTask worker --loglevel=info

Distributed Python

156

The output is shown in the first Command Prompt:

Let's note the warnings in the output to disable pickle as a serializer for security concerns.
The default serialization format is pickle simply because it is convenient (it supports the task
of sending complex Python objects as task arguments). Whether you use pickle or not, you
may want to turn off this warning by setting the CELERY_ACCEPT_CONTENT configuration
variable; for reference, take a look at http://celery.readthedocs.org/en/latest/
configuration.html.

Now, we launch the addTask_main script from a second Command Prompt:

http://celery.readthedocs.org/en/latest/configuration.html
http://celery.readthedocs.org/en/latest/configuration.html

Chapter 5

157

Finally, the result from the first Command Prompt should be like this:

The result is 10 (you can read it in the last line), as we expected.

How it works…
Let's focus on the first script, addTask.py. In the first two lines of code, we create a Celery
application instance that uses the RabbitMQ service ad broker:

from celery import Celery
app = Celery('addTask', broker='amqp://guest@localhost//')

The first argument in the Celery function is the name of the current module (addTask.py)
and the second argument is the broker keyboard argument, which indicates the URL used to
connect the broker (RabbitMQ). Then, we introduce the task. Each task must be added with
the annotation (decorator) @app.task.

The decorator helps Celery to identify which functions can be scheduled in the task queue.
After the decorator, we create the task that the workers can execute. Our first task will be a
simple function that performs the sum of two numbers:

@app.task
def add(x, y):
 return x + y

In the second script, AddTask_main.py, we call our task by using the delay() method:

if __name__ == '__main__':
 result = addTask.add.delay(5,5)

Let's remember that this method is a shortcut to the apply_async() method, which gives
us greater control of the task execution.

Distributed Python

158

There's more…
If RabbitMQ operates under its default configuration, Celery can connect with no other
information other than amqp://scheme.

Scientific computing with SCOOP
Scalable Concurrent Operations in Python (SCOOP) is a Python module to distribute
concurrent tasks (called Futures) on heterogeneous computational nodes. Its architecture is
based on the ØMQ package, which provides a way to manage Futures between the distributed
systems. The main application of SCOOP resides in scientific computing that requires the
execution of many distributed tasks using all the computational resources available.

To distribute its futures, SCOOP uses a variation of the broker patterns:

worker

broker

Worker originworker

worker

worker

worker

The SCOOP architecture

The central element of the communication system is the broker that interacts with all the
independent workers to dispatch messages between them. The Futures are created in the
worker elements instead of the central node (the broker) with a centralized serialization
procedure. This makes the topology architecture more reliable and makes performance better.
In fact, the broker's main workload consists of networking and interprocess I/O between
workers with relatively low CPU processing time.

Chapter 5

159

Getting ready
The SCOOP module is available at https://github.com/soravux/scoop/ and its
software dependencies are as follows:

ff Python >= 2.6 or >= 3.2

ff Distribute >= 0.6.2 or setuptools >= 0.7

ff Greenlet >= 0.3.4

ff pyzmq >= 13.1.0 and libzmq >= 3.2.0

ff SSH for remote execution

SCOOP can be installed on Linux, Mac, and Windows machines. Like Disco, its remote usage
requires an SSH software, and it must be enabled as a password-less authentication between
every computing node. For a complete reference about the SCOOP installation procedure, you
can read the information guide at http://scoop.readthedocs.org/en/0.7/install.
html.

On a Windows machine, you can install SCOOP simply by typing the following command:

pip install SCOOP

Otherwise, you can type the following command from SCOOP's distribution directory:

Python setup.py install

How to do it…
SCOOP is a library full of functionality that is primarily used in scientific computing problems.
Among the methods used to find a solution to these problems that are computationally
expensive, there is the Monte Carlo algorithm. A complete discussion of this method would
take up many pages of a book, but in this example, we want to show you how to parallelize a
Monte Carlo method for the solution of the following problem, the calculation of the number π,
using the features of SCOOP. So, let's consider the following code:

import math
from random import random
from scoop import futures
from time import time

https://github.com/soravux/scoop/
http://scoop.readthedocs.org/en/0.7/install.html
http://scoop.readthedocs.org/en/0.7/install.html

Distributed Python

160

def evaluate_number_of_points_in_unit_circle(attempts):
 points_fallen_in_unit_disk = 0
 for i in range (0,attempts) :
 x = random()
 y = random()
 radius = math.sqrt(x*x + y*y)
 #the test is ok if the point fall in the unit circle
 if radius < 1 :
 #if ok the number of points in a disk is increased
 points_fallen_in_unit_disk = \
 points_fallen_in_unit_disk + 1
 return points_fallen_in_unit_disk

def pi_calculus_with_Montecarlo_Method(workers, attempts):
 print("number of workers %i - number of attempts %i"
%(workers,attempts))
 bt = time()
 #in this point we call scoop.futures.map function
 #the evaluate_number_of_points_in_unit_circle \
 #function is executed in an asynchronously way
 #and several call this function can be made concurrently
 evaluate_task = \
 futures.map(evaluate_points_in_circle,
 [attempts] * workers)
 taskresult= sum(evaluate_task)
 print ("%i points fallen in a unit disk after " \
 %(Taskresult/attempts))
 piValue = (4. * Taskresult/ float(workers * attempts))

 computationalTime = time() - bt
 print("value of pi = " + str(piValue))
 print ("error percentage = " + \
 str((((abs(piValue - math.pi)) * 100) / math.pi)))
 print("total time: " + str(computationalTime))

if __name__ == "__main__":
 for i in range (1,4):
 #let's fix the numbers of workers...only two,
 #but it could be much greater
 pi_calculus_with_Montecarlo_Method(i*1000, i*1000)
 print(" ")

Chapter 5

161

To run a SCOOP program, you must open Command Prompt and type the following
instructions:

python –m scoop name_file.py

For our script, we'll expect output like this:

C:\Python CookBook\Chapter 5 - Distributed Python\chapter 5 -
codes>python -m scoop pi_calculus_with_montecarlo_method.py

[2015-06-01 15:16:32,685] launcher INFO SCOOP 0.7.2 dev on win32
using Python 3.3.0 (v3.3.0:bd8afb90e

bf2, Sep 29 2012, 10:55:48) [MSC v.1600 32 bit (Intel)], API: 1013

[2015-06-01 15:16:32,685] launcher INFO Deploying 2 worker(s) over 1
host(s).

[2015-06-01 15:16:32,685] launcher INFO Worker d--istribution:

[2015-06-01 15:16:32,686] launcher INFO 127.0.0.1: 1 +
origin

Launching 2 worker(s) using an unknown shell.

number of workers 1000 - number of attempts 1000

785 points fallen in a unit disk after

value of pi = 3.140636

error percentage = 0.03045122952842962

total time: 10.258585929870605

number of workers 2000 - number of attempts 2000

1570 points fallen in a unit disk after

value of pi = 3.141976

error percentage = 0.012202295220195048

total time: 20.451170206069946

number of workers 3000 - number of attempts 3000

2356 points fallen in a unit disk after

value of pi = 3.1413777777777776

error percentage = 0.006839709526630775

total time: 32.3558509349823

[2015-06-01 15:17:36,894] launcher (127.0.0.1:59239) INFO Root
process is done.

[2015-06-01 15:17:36,896] launcher (127.0.0.1:59239) INFO Finished
cleaning spawned subprocesses.

Distributed Python

162

The correct value of pi becomes more precise as we increase the number of attempts and
workers.

Monte Carlo evaluation of π: counting points inside the circle

How it works…
The code presented in the preceding section is just one of the many implementations of
the Monte Carlo method for the calculation of π. The evaluate_ points_in_circle
() function is taken randomly and then given a point of coordinates (x, y), and then it is
determined whether or not this point falls within the circle of the unit area.

Whenever the points_fallen_in_unit_disk condition is verified, the variable is
incremented. When the inner loop of the function ends, it will represent the total number of
points falling within the circle. This number is sufficient to calculate the value of pi. In fact, the
probability that the point falls within the circumference is π / 4, that is the ratio between the
area of the unit circle, equal to π and the area of the circumscribed square equal to 4.

So, by calculating the ratio between the number of points fallen inside the disc, taskresult,
and the number of shots made, workers * attempts, you obtain an approximation of π/4 and
of course, also of the number π:

piValue = (4. * taskresult / float (workers attempts *))

The SCOOP function is as shown:

futures.map (evaluate_points_in_circle, [attempts] * workers)

This takes care of distributing the computational load between the available workers and at
the same time, collects all the results. It executes evaluate_points_in_circle in an
asynchronous way and makes several calls to evaluate_points_in_circle concurrently.

Chapter 5

163

Handling map functions with SCOOP
A common task that is very useful when dealing with lists or other sequences of data is to
apply the same operation to each element of the list and then collect the result. For example,
a list update may be done in the following way from the Python IDLE:

>>>items = [1,2,3,4,5,6,7,8,9,10]

>>>updated_items = []

>>>for x in items:

>>> updated_items.append(x*2)

>>> updated_items

>>> [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

This is a common operation. However, Python has a built-in feature that does most of the
work.

The Python function map(aFunction, aSequence) applies a passed-in function to each
item in an iterable object and returns a list containing all the function call results. Now, the
same example would be:

>>>items = [1,2,3,4,5,6,7,8,9,10]

>>>def multiplyFor2(x):return x*2

>>>print(list(map(multiplyFor2,items)))

>>>[2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

Here, we passed in the map function the user-defined function multiplyFor2. It is applied to
each item in the items list, and finally, we collect the result in a new list that is printed.

Also, we can pass in a lambda function (a function defined and called without being bound to
an identifier) as an argument instead of a function. The same example now becomes:

>>>items = [1,2,3,4,5,6,7,8,9,10]

>>>print(list(map(lambda x:x*2,items)))

>>>[2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

The map built-in function has performance benefits because it is faster than a manually
coded for loop.

Distributed Python

164

Getting ready
The SCOOP Python modules define more than one map function that allow asynchronous
computation that could be propagated to its workers. These functions are:

ff futures.map((func, iterables, kargs): This returns a generator that
iterates the results in the same order as its inputs. It can thus act as a parallel
substitute for the standard Python map() function.

ff futures.map_as_completed(func, iterables, kargs): This will yield
results as soon as they are made available.

ff futures. scoop.futures.mapReduce(mapFunc, reductionOp,
iterables, kargs): This allows us to parallelize a reduction function after we
apply the map() function. It returns a single element.

How to do it…
In this example, we'll compare the MapReduce version of SCOOP with its serial
implementation:

"""
Compare SCOOP MapReduce with a serial implementation
"""
import operator
import time

from scoop import futures

def simulateWorkload(inputData):
 time.sleep(0.01)
 return sum(inputData)

def CompareMapReduce():
 mapScoopTime = time.time()
 res = futures.mapReduce(
 simulateWorkload,
 operator.add,
 list([a] * a for a in range(1000)),
)
 mapScoopTime = time.time() - mapScoopTime
 print("futures.map in SCOOP executed in {0:.3f}s \
 with result:{1}".format(

Chapter 5

165

 mapScoopTime,
 res
)
)

 mapPythonTime = time.time()
 res = sum(
 map(
 simulateWorkload,
 list([a] * a for a in range(1000))
)
)
 mapPythonTime = time.time() - mapPythonTime
 print("map Python executed in: {0:.3f}s \
 with result: {1}".format(
 mapPythonTime,
 res
)
)

if __name__ == '__main__':
 CompareMapReduce()

To evaluate the script, you must type the following command:

python -m scoop map_reduce.py

> [2015-06-12 20:13:25,602] launcher INFO SCOOP 0.7.2 dev on win32
using Python 3.4.3 (v3.4.3:9b73f1c3e601, Feb 24 2015, 22:43:06) [MSC
v.1600 32 bit (Intel)], API: 1013

[2015-06-12 20:13:25,602] launcher INFO Deploying 2 worker(s) over 1
host(s).

[2015-06-12 20:13:25,602] launcher INFO Worker d--istribution:

[2015-06-12 20:13:25,602] launcher INFO 127.0.0.1: 1 + origin

Launching 2 worker(s) using an unknown shell.

futures.map in SCOOP executed in 8.459s with result: 332833500

map Python executed in: 10.034s with result: 332833500

[2015-06-12 20:13:45,344] launcher (127.0.0.1:2559) INFO Root process
is done.

[2015-06-12 20:13:45,368] launcher (127.0.0.1:2559) INFO Finished
cleaning spawned subprocesses.

Distributed Python

166

How it works…
In this example, we compare the SCOOP implementation of the MapReduce function with
the serial implementation. The core of the script is the CompareMapReduce() function
that contains the two implementations. Also in this function, we evaluate the execution time
according to the following schema:

mapScoopTime = tme.time()
 #Run SCOOP MapReduce
mapScoopTime = time.time() – mapScoopTime

mapPythonTime = time.time()
 #Run serial MapReduce
mapPythonTime = time.time() - mapPythonTime

Then in the output, we report the resulting time:

futures.map in SCOOP executed in 8.459s with result: 332833500

map Python executed in: 10.034s with result: 332833500

To obtain the comparable execution time, we simulate a computational workload that
introduces a time.sleep statement in the simulatedWordload function:

def simulateWorkload(inputData, chose=None):
 time.sleep(0.01)
 return sum(inputData)

The SCOOP implementation of mapReduce is as follows:

res = futures.mapReduce(
 simulateWorkload,
 operator.add,
 list([a] * a for a in range(1000)),
)

The futures-mapReduce function has the following arguments:

ff simulateWork: This will be called to execute the Futures. We also need to
remember that a callable must return a value.

ff operator.add: This will be called to reduce the Futures results. However, it also
must support two parameters and return a single value.

ff list(……): This is the iterable object that will be passed to the callable object as a
separate Future.

Chapter 5

167

The serial implementation of mapReduce is, as follows:

 res = sum(
 map(
 simulateWorkload,
 list([a] * a for a in range(1000))
)
)

The Python standard map() function has two arguments: the simulateWorkload function
and the list() iterable object. However, to reduce the result, we used the Python function
sum.

Remote Method Invocation with Pyro4
Python Remote Objects (Pyro4) is a library that resembles Java's Remote Method Invocation
(RMI), which allows you to invoke a method of a remote object (that belongs to a different
process and is potentially on a different machine) almost as if the object were local (that is,
it belonged to the same process in which it runs the invocation). In this sense, the Remote
Method Invocation technology can be traced from a conceptual point of view. The idea of a
remote procedure call (RPC) is reformulated for the object-oriented paradigm (in which, of
course, the procedures are replaced by methods). The use of a mechanism for remote method
invocation in an object-oriented system entails the significant advantages of uniformity and
symmetry in the project, since it allows us to model the interactions between distributed
processes using the same conceptual tool that is used to represent the interactions between
the different objects of an application or the method call.

Application

Server

Stubs Skeletons

Remote Reference Layer (RRL) RMI System

Transport

Network

Transport

Client

Remote Method Invocation

Distributed Python

168

As you can see from the preceding figure, Pyro4 allows us to manage and distribute objects in
the client-server style. This means that the main parts of a Pyro4 system may switch from a
client called to a remote object to an object called to serve a function. It is important to note
that during the remote calling, there are always two distinct parts that a client and server
accepts and executes the client call. Finally, the entire management of this mechanism is
provided by Pyro4 in a distributed way.

Getting ready
The installation procedure is quite simple with the pip installer; from your command shell,
type: pip install pyro.

Otherwise, you can download the complete package from https://github.com/irmen/
Pyro4 and install the package with the Python setup.py install command from the package
directory.

For our examples, we'll use a Python3.3 distro on a Windows machine.

How to do it…
In this example, we'll see how to build and use a simple client-server communication using the
Pyro4 middleware. So, we must have two Python scripts.

The code for the server (server.py) is:

import Pyro4

class Server(object):
 def welcomeMessage(self, name):
 return ("Hi welcome " + str (name))

def startServer():
 server = Server()
 daemon = Pyro4.Daemon()
 ns = Pyro4.locateNS()
 uri = daemon.register(server)
 ns.register("server", uri)
 print("Ready. Object uri =", uri)
 daemon.requestLoop()

if __name__ == "__main__":
 startServer()

https://github.com/irmen/Pyro4
https://github.com/irmen/Pyro4

Chapter 5

169

The code for the client (client.py) is as follows:

import Pyro4

uri = input("What is the Pyro uri of the greeting object? ").strip()
name = input("What is your name? ").strip()
server = Pyro4.Proxy("PYRONAME:server")
print(server.welcomeMessage(name))

To run the example, we need a Pyro name server running. To do this, you can type the
following command from Command Prompt:

python -m Pyro4.naming

After this, you'll see the following message:

This means that the name server is running in your network. Then, you can start the server
and the client scripts in two separate console windows. To run the server, just type the
following:

python server.py

Now, you'll see something similar to what is shown in the following screenshot:

Distributed Python

170

To run the client, just type:

python client.py

After this, a message like this will appear:

insert the PYRO4 server URI (help : PYRONAME:server)

After the correct insertion, you must insert the name of the Pyro4 server, that is,
PYRONAME:server:

insert the PYRO4 server URI (help : PYRONAME:server) PYRONAME:server

You'll see the following message asking you to type your name:

What is your name? Rashmi

Finally, you'll see a welcome message, Hi welcome Rashmi, as shown in the following
screenshot:

How it works…
The server contains the object (the Server class) that can be accessed remotely. In our
example, this object only has the welcomeMessage() method that returns a string with
the name inserted in the client session:

class Server(object):
 def welcomeMessage(self, name):
 return ("Hi welcome " + str (name))

To start the server (the startServer() function), we must follow some simple steps:

1.	 Build the instance (named server) of the Server class: server = Server().

Chapter 5

171

2.	 Make a Pyro daemon: daemon = Pyro4.Daemon(). Pyro4 uses daemon objects to
dispatch incoming calls to appropriate objects. A server must create one daemon that
manages everything from its instance. Each server has a daemon that knows about
all the Pyro objects that the server provides.

3.	 To execute this script, we have to run a Pyro name server. So, we have to locate this
name server that runs: ns = Pyro4.locateNS().

4.	 Then, we need to register the server as Pyro Object object. It will be known only
inside the Pyro daemon: uri = daemon.register(server). It returns the URI for
the registered object.

5.	 Finally, we can register the object server with a name in the name server:
ns.register("server", uri).

6.	 The function ends with a call to daemon's eventloop method. It starts the event
loop of the server and waits for calls.

The Pyro4 API enables the developer to distribute objects in a transparent way. Our client
scripts send the requests to the server program to execute the welcomeMessage() method.
The remote call is performed first by creating a Proxy object. In fact, Pyro4 clients use proxy
objects to forward method calls to the remote objects and pass results back to the calling code:

server = Pyro4.Proxy("PYRONAME:server")

Now, we'll call the server's method that prints a welcome message:

print(server.welcomeMessage(name))

Chaining objects with Pyro4
In this recipe, we'll show you how to create a chain of objects, which call each other, with
Pyro4. Let's suppose that we want to build a distributed architecture like this:

Server 1

Client

Server 3 Server 2

Chaining an object with Pyro4

Distributed Python

172

We have four objects: a client and three servers disposed in a chain topology, as shown in the
preceding figure. The client forwards a request to Server1 and starts the chain call, forwarding
the request to Server2. Then, it calls the next object in the chain and Server3. The chain call
ends when Server3 calls Server1 again.

The example we're going to show highlights the aspects of the management of remote
objects, which can be easily extended to handle more complex distributed architectures.

How to do it…
To implement a chain of objects with Pyro4, we need five Python scripts. The first one is the
client (client.py). Here is the code for it:

from __future__ import print_function
import Pyro4

obj = Pyro4.core.Proxy("PYRONAME:example.chain.A")
print("Result=%s" % obj.process(["hello"]))

Each server will be characterized by the parameter this, which identifies it in the chain, and
the parameter next, which defines the next server (that is, subsequent to this) in the chain.

For a visualization of the implemented chain you can see the figure associated with this recipe.

ff server_1.py:
from __future__ import print_function
import Pyro4
import chainTopology

this = "1"
next = "2"

servername = "example.chainTopology." + this

daemon = Pyro4.core.Daemon()
obj = chainTopology.Chain(this, next)
uri = daemon.register(obj)
ns = Pyro4.naming.locateNS()
ns.register(servername, uri)

enter the service loop.
print("server_%s started " % this)
daemon.requestLoop()

Chapter 5

173

ff server_2.py:
from __future__ import print_function
import Pyro4
import chainTopology

this = "2"
next = "3"

servername = "example.chainTopology." + this

daemon = Pyro4.core.Daemon()
obj = chain.chainTopology(this, next)
uri = daemon.register(obj)
ns = Pyro4.naming.locateNS()
ns.register(servername, uri)

enter the service loop.
print("server_%s started " % this)
daemon.requestLoop()

ff server_3.py:

from __future__ import print_function
import Pyro4
import chainTopology

this = "3"
next = "1"

servername = "example.chainTopology." + this

daemon = Pyro4.core.Daemon()
obj = chain.chainTopology(this, next)
uri = daemon.register(obj)
ns = Pyro4.naming.locateNS()
ns.register(servername, uri)

enter the service loop.
print("server_%s started " % this)
daemon.requestLoop()

Distributed Python

174

The last script is the chain object, as shown in the following code:

ff chainTopology.py:

from __future__ import print_function
import Pyro4

class Chain(object):
 def __init__(self, name, next):
 self.name = name
 self.nextName = next
 self.next = None

 def process(self, message):
 if self.next is None:
 self.next = Pyro4.core.Proxy("PYRONAME:example.chain."
\
 + self.nextName)
 if self.name in message:
 print("Back at %s; the chain is closed!" % self.name)
 return ["complete at " + self.name]
 else:
 print("%s forwarding the message to the object %s" \
 % (self.name, self.nextName))
 message.append(self.name)
 result = self.next.process(message)
 result.insert(0, "passed on from " + self.name)
 return result

To execute this example, start by running the Pyro4 name server:

C:>python -m Pyro4.naming

Not starting broadcast server for localhost.

NS running on localhost:9090 (127.0.0.1)

Warning: HMAC key not set. Anyone can connect to this server!

URI = PYRO:Pyro.NameServer@localhost:9090

Then, run the three servers. In three separate Command Prompts, type the python server_
name.py command.

Chapter 5

175

A message like this should appear after this for server_1:

For server_2, something similar to what is shown in the following screenshot will appear:

A message similar to what is shown in the following screenshot should appear for server_3:

Finally, you must run the client.py script from another command shell:

The preceding message shows as a result the forwarding request passed across the three
servers, when it comes back to server_1 the task is completed. Also, here, we can focus
on the behavior of the object servers when the request is forwarded to the next object in
the chain. To see what happens next, refer to the message below the start message in the
following screenshot for server_1:

Distributed Python

176

The result of server_2 is as follows:

The result of server_3 is as follows:

How it works…
The core of this example is the Chain class that we defined in the chainTopology.
py script. It allows communication between the three servers. In fact, each server calls
the class to find out which is the next element in the chain (refer to the method process in
chainTopology.py). Also, it executes the call with the Pyro4.core.proxy statement:

if self.next is None:
 self.next = Pyro4.core.Proxy("PYRONAME:example.
chainTopology." + self.nextName)

If the chain is closed (the last call is done from server_3 to server_1), a closing message
is printed out:

if self.name in message:
 print("Back at %s; the chain is closed!" % self.name)
 return ["complete at " + self.name]

A forwarding message is printed out if there is a next element in the chain:

print("%s forwarding the message to the object %s" % (self.name, self.
nextName))
 message.append(self.name)
 result = self.next.process(message)
 result.insert(0, "passed on from " + self.name)
 return result

Chapter 5

177

The code for the server is the same and only differs on the definition of the current element
and the next element of the chain, for example, this is the definition for the first server
(server_1):

this = "1"
next = "2"

The remaining lines of the following code define, in the same manner as the previous
example, the communication with the next element in the chain:

servername = "example.chainTopology." + this
daemon = Pyro4.core.Daemon()
obj = chainTopology.Chain(this, next)
uri = daemon.register(obj)
ns = Pyro4.naming.locateNS()
ns.register(servername, uri)
daemon.requestLoop()

Finally, in the client script, we start the process by calling the first element (server 1) in the
chain:

obj = Pyro4.core.Proxy("PYRONAME:example.chainTopology.1")

Developing a client-server application with
Pyro4

In this recipe, we'll show you how to build a simple client-server application with Pyro4. The
application that we'll show here is not complete, but is equipped with all the methods that
will successfully complete and improve it.

A client-server application indicates a network architecture in which, generally, a client
computer or terminal connects to a server for the use of a certain service, such as the sharing
of a certain resource hardware/software with other clients and relying on the underlying
protocol architecture. In our system, the server manages an online shopping site, while the
clients manage the customers that are registered on this site and connect to it for shopping.

How to do it…
For the sake of simplicity, we have three scripts. The first one represents the object client
in which we have customer management, the second script is the object shop, and the third
script is the object server.

Distributed Python

178

For the server (server.py), the code is as follows:

#
The Shops server
#

from __future__ import print_function
import Pyro4
import shop

ns = Pyro4.naming.locateNS()
daemon = Pyro4.core.Daemon()
uri = daemon.register(shop.Shop())
ns.register("example.shop.Shop", uri)
print(list(ns.list(prefix="example.shop.").keys()))
daemon.requestLoop()

The code for the client (client.py) is as follows:

from __future__ import print_function
import sys
import Pyro4

A Shop client.
class client(object):
 def __init__(self, name , cash):
 self.name = name
 self.cash = cash
 def doShopping_deposit_cash(self, Shop):
 print("\n*** %s is doing shopping with %s:"\
 % (self.name, Shop.name()))
 print("Log on")
 Shop.logOn(self.name)
 print("Deposit money %s" %self.cash)
 Shop.deposit(self.name, self.cash)
 print("balance=%.2f" % Shop.balance(self.name))
 print("Deposit money %s" %self.cash)
 Shop.deposit(self.name, 50)
 print("balance=%.2f" % Shop.balance(self.name))
 print("Log out")
 Shop.logOut(self.name)

 def doShopping_buying_a_book(self, Shop):
 print("\n*** %s is doing shopping with %s:"\

Chapter 5

179

 % (self.name, Shop.name()))
 print("Log on")
 Shop.logOn(self.name)
 print("Deposit money %s" %self.cash)
 Shop.deposit(self.name, self.cash)
 print("balance=%.2f" % Shop.balance(self.name))
 print ("%s is buying a book for %s$"\
 %(self.name,37))
 Shop.buy(self.name,37)
 print("Log out")
 Shop.logOut(self.name)

if __name__ == '__main__':
 ns = Pyro4.naming.locateNS()
 uri = ns.lookup("example.shop.Shop")
 print(uri)
 Shop = Pyro4.core.Proxy(uri)
 meeta = client('Meeta',50)
 rashmi = client('Rashmi',100)
 rashmi.doShopping_buying_a_book(Shop)
 meeta.doShopping_deposit_cash(Shop)
 print("")
 print("")
 print("")
 print("")

 print("The accounts in the %s:" % Shop.name())
 accounts = Shop.allAccounts()
 for name in accounts.keys():
 print(" %s : %.2f"\
 % (name, accounts[name]))

This is the code for the object shop (shop.py):

class Account(object):
 def __init__(self):
 self._balance = 0.0

 def pay(self, price):
 self._balance -= price

 def deposit(self, cash):
 self._balance += cash

Distributed Python

180

 def balance(self):
 return self._balance

class Shop(object):
 def __init__(self):
 self.accounts = {}
 self.clients = ['Meeta','Rashmi','John','Ken']

 def name(self):
 return 'BuyAnythingOnline'

 def logOn(self, name):
 if name in self.clients :
 self.accounts[name] = Account()
 else :
 self.clients.append(name)
 self.accounts[name] = Account()

 def logOut(self, name):
 print('logout %s' %name)

 def deposit(self, name, amount):
 try:
 return self.accounts[name].deposit(amount)
 except KeyError:
 raise KeyError('unknown account')

 def balance(self, name):
 try:
 return self.accounts[name].balance()
 except KeyError:
 raise KeyError('unknown account')

 def allAccounts(self):
 accs = {}
 for name in self.accounts.keys():
 accs[name] = self.accounts[name].balance()
 return accs

 def buy(self,name,price):
 balance = self.accounts[name].balance()
 self.accounts[name].pay(price)

Chapter 5

181

To execute the code, you must first enable the Pyro4 name sever:

C:>python -m Pyro4.naming

Not starting broadcast server for localhost.

NS running on localhost:9090 (127.0.0.1)

Warning: HMAC key not set. Anyone can connect to this server!

URI = PYRO:Pyro.NameServer@localhost:9090

Then, start the server by using the python server.py command. A shell like the one shown
in the following screenshot will appear when you do this:

Finally, you should start the customer simulation with the following command:

python client.py

The following text will be printed out with the use of the following command:

C:\Users\Utente\Desktop\Python CookBook\Python Parallel Programming
INDEX\Chapter 5 - Distributed Python\

chapter 5 - codes\banks>python client.py

PYRO:obj_8c4a5b4ae7554c2c9feee5b0113902e0@localhost:59225

*** Rashmi is doing shopping with BuyAnythingOnline:

Log on

Deposit money 100

balance=100.00

Rashmi is buying a book for 37$

Log out

*** Meeta is doing shopping with BuyAnythingOnline:

Log on

Deposit money 50

balance=50.00

Distributed Python

182

Deposit money 50

balance=100.00

Log out

The accounts in the BuyAnythingOnline:

 Meeta : 100.00

 Rashmi : 63.00

This output shows a simple session for two customers, Meeta and Rashmi.

How it works…
The server side of the application must locate the Shop() object, calling the statement:

ns = Pyro4.naming.locateNS()

Then, it must enable a communication channel:

daemon = Pyro4.core.Daemon()
uri = daemon.register(shop.Shop())
ns.register("example.shop.Shop", uri)
daemon.requestLoop()

The shop.py script contains classes for account and shop management. The shop class
manages each account. It provides methods to log in and log out, manage customer's money,
and to buy items:

class Shop(object):

 def logOn(self, name):
 if name in self.clients :
 self.accounts[name] = Account()
 else :
 self.clients.append(name)
 self.accounts[name] = Account()

 def logOut(self, name):
 print('logout %s' %name)

 def deposit(self, name, amount):
 try:
 return self.accounts[name].deposit(amount)
 except KeyError:
 raise KeyError('unknown account')

Chapter 5

183

 def balance(self, name):
 try:
 return self.accounts[name].balance()
 except KeyError:
 raise KeyError('unknown account')

 def buy(self,name,price):
 balance = self.accounts[name].balance()
 self.accounts[name].pay(price)

Each customer has their own Account object that provides methods for customer deposit
management:

class Account(object):
 def __init__(self):
 self._balance = 0.0

 def pay(self, price):
 self._balance -= price

 def deposit(self, cash):
 self._balance += cash

 def balance(self):
 return self._balance

Finally, the client.py script contains the class that is used to start the simulation. In the
main program, we instantiate two customers, Rashmi and Meeta:

meeta = client('Meeta',50)
rashmi = client('Rashmi',100)
rashmi.doShopping_buying_a_book(Shop)
meeta.doShopping_deposit_cash(Shop)

They deposit some cash end on the site and then start with their shopping as shown:

ff Rashmi buys a book:
def doShopping_buying_a_book(self, Shop):
 Shop.logOn(self.name)
 Shop.deposit(self.name, self.cash)
 Shop.buy(self.name,37)
 Shop.logOut(self.name)

Distributed Python

184

ff Meeta twice deposits $100 in her account:
def doShopping_deposit_cash(self, Shop):
 Shop.logOn(self.name)
 Shop.deposit(self.name, self.cash)
 Shop.deposit(self.name, 50)
 Shop.logOut(self.name)

ff At the end of the simulation, the main program reports the count's deposit of Meeta
and Rashmi:

print("The accounts in the %s:" % Shop.name())
 accounts = Shop.allAccounts()
 for name in accounts.keys():
 print(" %s : %.2f"\
 % (name, accounts[name]))

Communicating sequential processes with
PyCSP

PyCSP is a Python module based on communicating sequential processes, which is a
programming paradigm developed to build concurrent programs via message passing. The
PyCSP module is characterized by:

ff The exchange of messages between processes

ff The possibility of using a thread to use shared memory

ff The exchange of messages is done through channels

The channels allow:

ff An exchange of values between processes

ff The synchronization of processes

PyCSP allows the use of different channel types: One2One, One2Any, Any2One, and Any2One.
These names indicate the number of writers and readers that can communicate over the
channel.

Getting ready
PyCSP can be installed using the pip installer via the following command:

pip install python-csp

Also, it is possible to download the entire distribution from GitHub (https://github.com/
futurecore/python-csp).

https://github.com/futurecore/python-csp
https://github.com/futurecore/python-csp

Chapter 5

185

Download it and then type the following from the installation directory:

python setup.py install

For our examples, we will use the Python Version 2.7

How to do it…
In this first example, we want to introduce the basic concepts of PyCSP, the processes, and
channels. So, we have defined two processes named counter and printer. We now want to see
how to define the communication between these processes:

Let's consider the following code:

from pycsp.parallel import *

@process
def processCounter(cout, limit):
 for i in xrange(limit):
 cout(i)
 poison(cout)

@process
def processPrinter(cin):
 while True:
 print cin(),

A = Channel('A')
Parallel(
 processCounter(A.writer(), limit=5),
 processPrinter(A.reader())
)

shutdown()

To execute this code, simply press the run button on the Python2.7 IDLE. An output like this
will be shown after this:

Python 2.7.9 (default, Dec 10 2014, 12:28:03) [MSC v.1500 64 bit (AMD64)]
on win32

Type "copyright", "credits" or "license()" for more information.

>>> ========================RESTART ==========================

>>>

0 1 2 3 4

>>>

Distributed Python

186

How it works…
In this example, we used the functions defined in the pycsp.parallel module:

from pycsp.parallel import *

This module has the Any2Any channel type, which allows multiple processes, which are
attached to the ends of the channels, to communicate through it. To create the channel A,
we use the following statement:

A = Channel('A')

This new channel is automatically hosted in the current Python interpreter. For each Python
interpreter that imports the pycsp.parallel module, only a port that handles all the
channels started in the Python interpreter will be listed. However, this module does not
provide a name server available for the channels. So to connect to a hosted channel, you
must know the right location.

For example, to connect the channel B to the localhost port 8888, we input the following code:

A = pycsp.Channel('B', connect=('localhost, 8888))

In PyCSP, we have three basic ways to manage a channel:

ff channel.Disconnect(): This allows the Python interpreter to quit. It is used in a
client-server setting, where a client wants to be Disconnected after it receives a reply
from a server.

ff channel.reader(): This creates and returns the reader end of the channel.

ff channel.writer(): This creates and returns the writer end of the channel.

To indicate a process, we use the @process decorator. In PyCSP, each generated CSP
process is implemented as a single OS thread. In this example, we have two processes: a
counter and a printer. The process counter has two arguments: cout to redirect its output and
limit, which defines the total number of items to be printed:

@process
def counter(cout, limit):
 for i in xrange(limit):
 cout(i)
 poison(cout)

The poison statement, poison(cout), means that the channel end is poisoned. This means
that all subsequent reads and writes on this channel will throw an exception that can be used
to end the current procedure or Disconnect the channel. We also note that the poisoning may
cause a race condition if there are multiple concurrent procedures.

Chapter 5

187

The process printer only has one argument, which is the item to print, defined in the cin
variable:

@process
def printer(cin):
 while True:
 print cin(),

The core of the script is in the following line of code:

A = Channel('A')

This defines the A channel, which permits communication between the two processes.

Finally, the Parallel statement is as follows:

Parallel(
 counter(A.writer(), limit=10),
 printer(A.reader())
)

This starts all the processes and blocks them only if the counter and process have terminated
communication with each other. This statement represents the basic idea of CSP: concurrent
processes synchronize with each other by synchronizing their I/O through the channel A. The
way to do this is to allow I/O to occur only when a process counter states that it is ready to
output to a process printer specifically and the process printer states that it is ready to input
from a process counter. If one of these happens without the other being true, the process is
put in a wait queue until the other process is ready.

Each PyCSP application creates a server thread to manage the incoming communication over
the channels. So, it is always necessary to terminate each PyCSP application with a call to the
shutdown() method:

shutdown()

PyCSP provides two methods to trace its execution:

ff TraceInit(<filename>, stdout=<True | False>): This is used to start
the trace

ff TraceQuit(): This is used to stop the trace

Distributed Python

188

These must be placed in the following schema:

from pycsp.common.trace import *

TraceInit("trace.log")

"""
 PROCESSES TO BE TRACED

"""

TraceQuit()
shutdown()

For our example, we have built the log trace (with a limit count equal to three):

{'chan_name': 'A', 'type': 'Channel'}

{'chan_name': 'A', 'type': 'ChannelEndWrite'}

{'chan_name': 'A', 'type': 'ChannelEndRead'}

{'processes': [{'func_name': 'processCounter', 'process_id':
'9cb4b3720ed111e5bb4c0024813d643d.processCounter'}, {'func_name':
'processPrinter', 'process_id': '9cb63a0f0ed111e5993a0024813d643d.
processPrinter'}], 'process_id': '9c42428f0ed111e59ba10024813d643d.__
INIT__', 'type': 'BlockOnParallel'}

{'func_name': 'processCounter', 'process_id':
'9cb4b3720ed111e5bb4c0024813d643d.processCounter', 'type':
'StartProcess'}

{'func_name': 'processPrinter', 'process_id':
'9cb63a0f0ed111e5993a0024813d643d.processPrinter', 'type':
'StartProcess'}

{'process_id': '9cb4b3720ed111e5bb4c0024813d643d.processCounter', 'chan_
name': 'A', 'type': 'BlockOnWrite', 'id': 0}

{'process_id': '9cb63a0f0ed111e5993a0024813d643d.processPrinter', 'chan_
name': 'A', 'type': 'BlockOnRead', 'id': 0}

{'process_id': '9cb63a0f0ed111e5993a0024813d643d.processPrinter', 'chan_
name': 'A', 'type': 'DoneRead', 'id': 0}

{'process_id': '9cb4b3720ed111e5bb4c0024813d643d.processCounter', 'chan_
name': 'A', 'type': 'DoneWrite', 'id': 0}

{'process_id': '9cb4b3720ed111e5bb4c0024813d643d.processCounter', 'chan_
name': 'A', 'type': 'BlockOnWrite', 'id': 1}

{'process_id': '9cb63a0f0ed111e5993a0024813d643d.processPrinter', 'chan_
name': 'A', 'type': 'BlockOnRead', 'id': 1}

Chapter 5

189

{'process_id': '9cb63a0f0ed111e5993a0024813d643d.processPrinter', 'chan_
name': 'A', 'type': 'DoneRead', 'id': 1}

{'process_id': '9cb4b3720ed111e5bb4c0024813d643d.processCounter', 'chan_
name': 'A', 'type': 'DoneWrite', 'id': 1}

{'process_id': '9cb4b3720ed111e5bb4c0024813d643d.processCounter', 'chan_
name': 'A', 'type': 'BlockOnWrite', 'id': 2}

{'process_id': '9cb63a0f0ed111e5993a0024813d643d.processPrinter', 'chan_
name': 'A', 'type': 'BlockOnRead', 'id': 2}

{'process_id': '9cb63a0f0ed111e5993a0024813d643d.processPrinter', 'chan_
name': 'A', 'type': 'DoneRead', 'id': 2}

{'process_id': '9cb4b3720ed111e5bb4c0024813d643d.processCounter', 'chan_
name': 'A', 'type': 'DoneWrite', 'id': 2}

{'process_id': '9cb4b3720ed111e5bb4c0024813d643d.processCounter', 'chan_
name': 'A', 'type': 'Poison', 'id': 3}

{'func_name': 'processCounter', 'process_id':
'9cb4b3720ed111e5bb4c0024813d643d.processCounter', 'type': 'QuitProcess'}

{'process_id': '9cb63a0f0ed111e5993a0024813d643d.processPrinter', 'chan_
name': 'A', 'type': 'BlockOnRead', 'id': 3}

{'func_name': 'processPrinter', 'process_id':
'9cb63a0f0ed111e5993a0024813d643d.processPrinter', 'type': 'QuitProcess'}

{'process_id': '9cb63a0f0ed111e5993a0024813d643d.processPrinter', 'chan_
name': 'A', 'type': 'Poison', 'id': 3}

{'processes': [{'func_name': 'processCounter', 'process_id':
'9cb4b3720ed111e5bb4c0024813d643d.processCounter'}, {'func_name':
'processPrinter', 'process_id': '9cb63a0f0ed111e5993a0024813d643d.
processPrinter'}], 'process_id': '9c42428f0ed111e59ba10024813d643d.__
INIT__', 'type': 'DoneParallel'}

{'type': 'TraceQuit'}

There's more…
CSP is a formal language used to describe the interactions of concurrent processes. It falls
under the mathematical theory of competition, which is known as algebra processes. It has
been used in practice as a tool for the specification and verification of the competition aspects
of a wide variety of systems. The rules of the CSP-inspired programming language Occam are
now widely used as a parallel programming language.

For those of you who are interested in CSP's theory, we suggest you go
through Hoare's original book, which is available online at http://www.
usingcsp.com/cspbook.pdf.

http://www.usingcsp.com/cspbook.pdf
http://www.usingcsp.com/cspbook.pdf

Distributed Python

190

Using MapReduce with Disco
Disco is a Python module based on the MapReduce framework introduced by Google, which
allows the management of large distributed data in computer clusters. The applications
written using Disco can be performed in the economic cluster of machines with a very short
learning curve. In fact, the technical difficulties related to the processes that are distributed as
load balancing, job scheduling, and the communications protocol are completely managed by
Disco and hidden from the developer.

The typical applications of this module are essentially as follows:

ff Web indexing

ff URL access counter

ff Distributed sort

Input
Data

Input
Data #1

Map
Instance

#1

Reduce
Instance

Map
Instance

#N
Input
Data #N

Output
Data

The MapReduce schema

The MapReduce algorithm implemented in Disco is as follows:

ff Map: The master node takes the input data, breaks it into smaller subtasks,
and distributes the work to the slave nodes. The single map node produces the
intermediate result of the map() function in the form of pairs [key, value] stored
on a distributed file whose location is given to the master at the end of this step.

ff Reduce: The master node collects the results. It combines the pairs [key,
value] in the lists of values that share the same key and sorts them for the key
(lexicographical and increasing or user-defined). The pairs of the form [key,
IteratorList (value, value, ...)] are passed to the nodes that run the
reducer function reduce().

Moreover, the output data that is stored on files, can be the input for a new map and reduce
procedure, allowing, in this way, to concatenate more MapReduce jobs.

Chapter 5

191

Getting ready

The Disco module is available at https://github.com/
Discoproject/Disco.

You need a Linux/Unix distribution to install it.

The following are the prerequisites (on each server):

ff The SSH daemon and client

ff Erlang/OTP R14A or newer version

ff Python 2.6.6 or newer version, Python 3.2 or newer version

Finally, to install Disco, type the following lines:

git clone git://github.com/Discoproject/Disco.git $Disco_HOME

cd $Disco_HOME

make

cd lib && python setup.py install --user && cd ..

bin/Disco nodaemon

The next step is to enable a password-less login for all servers in the Disco clusters. For a
single machine installation, you must run the following command:

ssh-keygen -N '' -f ~/.ssh/id_dsa

Then, type the following:

cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys

Now if you try to log in to all servers in the cluster or localhost, you will not need to give a
password nor answer any questions after the first log in attempt.

For any questions about Disco's installation, refer to http://Disco.
readthedocs.org/en/latest/intro.html.

In the next example, we have used a Python 2.7 distro on a Linux machine.

https://github.com/Discoproject/Disco
https://github.com/Discoproject/Disco
http://Disco.readthedocs.org/en/latest/intro.html
http://Disco.readthedocs.org/en/latest/intro.html

Distributed Python

192

How to do it…
In the following example, we examine a typical MapReduce problem using the Disco module.
Given a text, we must count all the occurrences of some words in the text:

from Disco.core import Job, result_iterator

def map(line, params):
 import string
 for word in line.split():
 strippedWord = word.translate\
 (string.maketrans("",""), string.punctuation)
 yield strippedWord, 1

def reduce(iter, params):
 from Disco.util import kvgroup
 for word, counts in kvgroup(sorted(iter)):
 yield word, sum(counts)

if __name__ == '__main__':
 job = Job().run(input="There are known knowns.\
 These are things we know that we know.\
 There are known unknowns. \
 That is to say,\
 there are things that \
 we know we do not know.\
 But there are also unknown unknowns.\
 There are things \
 we do not know we do not know",
 map=map,
 reduce=reduce)

 sort_in_numerical_order =\
 open('SortNumerical.txt', 'w')
 sort_in_alpbabetically_order = \
 open('SortAlphabetical.txt', 'w')

 wordCount = []
 for word, count in \
 result_iterator(job.wait(show=True)):
 sort_in_alpbabetically_order.write('%s \t %d\n' %
 (str(word), int(count)))

Chapter 5

193

 wordCount.append((word,count))

 sortedWordCount =sorted(wordCount, \
 key=lambda count: count[1],\
 reverse=True)

 for word, count in sortedWordCount:
 sort_in_numerical_order.write('%s \t %d\n'\
 % (str(word), int(count)))

 sort_in_alpbabetically_order.close()
 sort_in_numerical_order.close()

After running the script, we have the two resulting files that we've reported in the following
table:

Sortnumerical.txt SortAlphabetical.txt
6	 are

6	 know

6	 we

5	 there

3	 do

3	 not

3	 that

3	 things

2	 known

2	 unknowns

1	 also

1	 but

1	 is

1	 knowns

1	 say

1	 to

1	 these

1	 unknown

also		 1

are		 6

but		 1

do		 3

is		 1

know		 6

known		 2

knowns		 1

not		 3

say		 1

to		 1

that		 3

there		 5

these		 1

things		 3

unknown	 1

unknowns	 2

we		 6

Distributed Python

194

How it works…
The core of this example are the map and reduce functions. The map function Disco has two
arguments line that represent the sentence to be analyzed. However, params will be ignored
in this example.

Here, the sentence is split in to one or more words, the punctuation symbols are ignored, and
all words are converted to lowercase:

def map(line, params):
 import string
 for word in line.split():
 strippedWord = word.translate\
 (string.maketrans("",""), string.punctuation)
 yield strippedWord, 1

The result of a map function on a line of text is a series of tuples in the form of a key and a
value. For example, the sentence "There are known knowns" takes on this form:

[("There", 1), ("are", 1), ("known", 1), ("knowns",1)]

Let's remember that the MapReduce framework manipulates enormous datasets that are
larger than the common memory space in a single machine, so the keyword yield at the end
of the map function allows Disco to manage datasets in a smarter way. The reduce function
operates on two arguments, iter, that are iterable objects (it acts like a list data structure),
while the params argument linked in the map function is ignored in this example.

Each iterable object is sorted into alphabetical order using the Python function sorted:

def reduce(iter, params):
 from Disco.util import kvgroup
 for word, counts in kvgroup(sorted(iter)):
 yield word, sum(counts)

On the sorted list, we apply Disco's function kvgroup. It groups values of consecutive keys,
which are compared to be equal. Finally, the occurrence of each word in the text is obtained
through the Python function sum.

In the main part, we use Disco's job function to execute the mapReduce function:

job = Job().run(input="There are known knowns.\
 These are things we know that we know.\
 There are known unknowns. \
 That is to say,\
 there are things that \
 we know we do not know.\
 But there are also unknown unknowns.\

Chapter 5

195

 There are things \
 we do not know we do not know",
 map=map,
 reduce=reduce)

Finally, the results are ordered into numerical and alphabetical order and they are printed in
two output files:

sort_in_numerical_order = open('SortNumerical.txt', 'w')

sort_in_alpbabetically_order = open('SortAlphabetical.txt', 'w')

There's more…
Disco is a very powerful framework that is rich with different functionalities. A full discussion
of this module is beyond the scope of this book.

To get a complete introduction, refer to http://Discoproject.org/.

A remote procedure call with RPyC
Remote Python Call (RPyC) is a Python module that is used for remote procedure calls as
well as for distributed computing. The idea at the base of RPC is to provide a mechanism to
transfer control from a program (client) to another (server), similar to what happens with the
invocation of a subroutine in a centralized program. The advantages of this approach are that
it has very simple semantics and knowledge and familiarity of the centralized mechanism of
a function call. In a procedure invocation, the client process is suspended until the process
server has performed the necessary computations and has given the results of computations.
The effectiveness of this method is due to the fact that the client-server communication takes
the form of a procedure call instead of invocations to the transport layer so that all the details
of the operation of the network are hidden from the application program by placing them in
local procedures called stubs. The main features of RPyC are:

ff In syntactic transparency a remote procedure call can have the same syntax as a
local call

ff In semantic transparency a remote procedure call is semantically equivalent to the
local one

ff Handling synchronous and asynchronous communication

http://Discoproject.org/

Distributed Python

196

ff Symmetric communication protocol means that both the client and server can serve
a request

Calling Procedure

Resume
Execution

Request Message

Reply Message

Called Procedure

Received procedure
and start procedure
execution

Procedure Execution

Send Reply and wait
for next request

The remote procedure call model

Getting ready
The installation procedure is quite simple with the pip installer. From your command shell,
type the following:

pip install rpyc

Otherwise, you can go to https://github.com/tomerfiliba/rpyc and download the
complete package (it is a .zip file). Finally, to install rypc, you must type the command:
Python setup.py install from the package directory.

After the installation, you can just explore this library. In our examples, we will run a client and
server on the same machine, localhost. Running a server with rypc is very simple: go to the
directory ../rpyc-master/bin of the rpyc package directory and then execute the file
rpyc_classic.py:

C:\ Python CookBook\ Chapter 5- Distributed Python\rpyc-master\bin>python
rpyc_classic.py

https://github.com/tomerfiliba/rpyc

Chapter 5

197

After running this script, you'll read on Command Prompt the following output message:

INFO:SLAVE/18812:server started on [0.0.0.0]:18812

How to do it…
We are now ready for the first example that shows you how to redirect stdout of a remote
process:

import rpyc
import sys
c = rpyc.classic.connect("localhost")
c.execute("print ('hi python cookbook')")
c.modules.sys.stdout = sys.stdout
c.execute("print ('hi here')")

By running this script, you'll see the redirected output in the server side:

C:\Python CookBook\Chapter 5- Distributed Python\rpyc-master\bin>python
rpyc_classic.py

INFO:SLAVE/18812:server started on [0.0.0.0]:18812

INFO:SLAVE/18812:accepted 127.0.0.1:6279

INFO:SLAVE/18812:welcome [127.0.0.1]:6279

hi python cookbook

How it works…
The first step is to run a client that connects to the server:

import rpyc

c = rpyc.classic.connect("localhost")

Here, the client-side statement rpyc.classic.connect (host, port) creates a socket
connection to the given host and port. Sockets define the endpoint of a connection. rpyc
uses sockets to communicate with other programs, which may be distributed on different
computers.

Next, we have the following statement:

c.execute("print ('hi python cookbook')")

This executes the print statement on the server (a remote exec statement).

199

6
GPU Programming

with Python

In this chapter, we will cover the following recipes:

ff Using the PyCUDA module

ff How to build a PyCUDA application

ff Understanding the PyCUDA Memory Model with matrix manipulation

ff Kernel invocations with GPUArray

ff Evaluating element-wise expressions with PyCUDA

ff The MapReduce operation with PyCUDA

ff GPU programming with NumbaPro

ff Using GPU-accelerated libraries with NumbaPro

ff Using the PyOpenCL module

ff How to build a PyOpenCL application

ff Evaluating element-wise expressions with PyOpenCL

ff Testing your GPU application with PyOpenCL

GPU Programming with Python

200

Introduction
The graphics processing unit (GPU) is an electronic circuit that specializes in processing
data to render images from polygonal primitives. Although they were designed to carry out
rendering images, the GPU has continued to evolve, becoming more complex and efficient in
serving both the real-time and offline rendering community and in performing any scientific
computations. GPUs are characterized by a highly parallel structure, which allows it to
manipulate large datasets in an efficient manner. This feature combined with the rapid
improvement in graphics hardware performance and the extent of programmability caught
the attention of the scientific world with the possibility of using GPU for purposes other than
just rendering images. Traditional GPUs are fixed function devices where the whole rendering
pipeline is built on hardware. This restricts graphics programmers, leading them to use
different, efficient and high-quality rendering algorithms. Hence, a new GPU was built with
millions of lightweight parallel cores, which were programmable to render graphics using
shaders. This is one of the biggest advancements in the field of computer graphics and
the gaming industry. With lots of programmable cores available, the GPU vendors started
developing models for parallel programming. Each GPU is indeed composed of several
processing units called Streaming Multiprocessor (SM) that represent the first logic level of
parallelism; and each SM infact works simultaneously and independently from the others.

Thread Execution Control Unit

SM

Local
Memory

Device Memory

Host Memory

SM

SM SM

SM SM

SM SM

SM SM

Special
Function Unit

SM SM

SM SM

SM SM

SM SM

SM SM

Special
Function Unit

SM SM

SM SM

SM SM

SM SM

SM SM

Special
Function Unit

SP

SP

SP

SP

SP

SP

SP

SP

SP

Local
Memory

Local
Memory

The GPU architecture

Chapter 6

201

Each SM is in turn divided into a group of Stream Processors (SP), each of which has a core
of real execution and can sequentially run a thread. An SP represents the smallest unit of
an execution logic and represents the level of finer parallelism. The division in SM and SP
is structural in nature, but it is possible to outline a further logical organization of the SP of
a GPU, which are grouped together in logical blocks characterized by a particular mode of
execution. All cores that make up a group run the same instruction at the same time. This
is just the Single instruction, multiple data (SIMD) model, which we described in the first
chapter of this book.

Each SM also has a number of registers, which represent an area of ​​ memory for quick
access that is temporary, local (not shared between the cores), and limited in size. This
allows storage of frequently used values ​​ from a single core. The general-purpose computing
on graphics processing units (GP-GPU) is the field devoted to the study of the techniques
needed to exploit the computing power of the GPU to perform calculations quickly, thanks
to the high level of parallelism inside. As seen before, GPUs are structured quite differently
from conventional processors; for this, they have problems of a different nature and require
specific programming techniques. The most outstanding feature that distinguishes a graphics
processor is the high number of cores available, which allow us to carry out many threads
of execution competitors, which are partially synchronized for the execution of the same
operation. This feature is very useful and efficient in situations where you want to split your
work in many parts to perform the same operations on different data. On the contrary, it is
hard to make the best use of this architecture when there is a strong sequential and logical
order to be respected in the operations to be carried out; otherwise, the work cannot be
evenly divided into many small subparts. The programming paradigm that characterizes
the GPU computing is called Stream Processing because the data can be viewed as a
homogeneous flow of values to which the same operations are applied synchronously.

Currently, the most efficient solutions to exploit the computing power provided by GPU cards
are the software libraries CUDA and OpenCL. In the following recipes, we will present the
realization of these software libraries in the Python programming language.

Using the PyCUDA module
PyCUDA is a Python wrap for Compute Unified Device Architecture (CUDA), the software
library developed by NVIDIA for GPU programming. The CUDA programming model is the
starting point of understanding how to program the GPU properly with PyCUDA. There are
concepts that must be understood and assimilated to be able to approach this tool correctly
and to understand the more specific topics that are covered in the following recipes.

GPU Programming with Python

202

A hybrid programming model
The programming model "hybrid" of CUDA (and consequently of PyCUDA, which is a Python
wrapper) is implemented through specific extensions to the standard library of the C language.
These extensions have been created, whenever possible, syntactically like the function calls in
the standard C library. This allows a relatively simple approach to a hybrid programming model
that includes the host and device code. The management of the two logical parts is done by
the NVCC compiler. Here is a brief description of how this compiler works:

1.	 It separates a device code from a host-code device.

2.	 It invokes a default compiler (for example, GCC) to compile the host code.

3.	 It builds the device code in the binary form (Cubin objects) or in the form assembly
(code PTX).

4.	 It generates a host key "global" that also includes code PTX.

The compiled CUDA code is converted to a device-specific binary by the driver, during runtime.
All the previously mentioned steps are executed by PyCUDA at runtime, which makes it a
Just-in-time (JIT) compiler. The drawback of this approach is the increased load time of
the application, which is the only way to maintain compatibility "forward", that is, you can
perform operations on a device that does not exist at the time of the actual compilation.
A JIT compilation therefore makes an application compatible with future devices that are
built on architectures with higher computing power, so it is not yet possible to generate
any binary code.

Edit

Run

Kernel Invocation

Run on GPU

PyCUDA

nvcc .cubin

Upload to GPU

The PyCUDA execution model

Chapter 6

203

The kernel and thread hierarchy
An important element of a CUDA program is a kernel. It represents the code that is executed
parallelly on the basis of specifications that will be clarified later with the examples described
here. Each kernel's execution is done by computing units that are called threads. Unlike
threads in CPU, GPU threads are lighter in such a way that the change of context is not one
of the factors to be taken into account in a code performance evaluation because it can be
considered as instantaneous. To determine the number of threads that must perform a single
kernel and their logical organization, CUDA defines a two-level hierarchy. In the highest level,
it defines a so-called grid of blocks. This grid represents a bidimensional structure where the
thread blocks are distributed, which are three-dimensional.

GRID 1

Block 1

Thread 1 Thread 2

Thread 3 Thread 4

Block 2

Thread 1 Thread 2

Thread 3 Thread 4

Block 3

Thread 1 Thread 2

Thread 3 Thread 4

Block 4

Thread 1 Thread 2

Thread 3 Thread 4

The distribution of (3-dimensional) threads in a two-level hierarchy of PyCUDA

Based on this structure, a kernel function must be launched with additional parameters that
specify precisely the size of the grid and block.

Getting ready
On the Wiki page http://wiki.tiker.net/PyCuda/Installation, the basic
instructions to install PyCuda on the main operative systems (Linux, Mac, and Windows) are
explained.

http://wiki.tiker.net/PyCuda/Installation

GPU Programming with Python

204

With these instructions, you will build a 32-bit PyCUDA library for a Python 2.7 distro:

1.	 The first step is to download and install all the components provided by NVDIA to
develop with CUDA (refer to https://developer.nvidia.com/cuda-toolkit-
archive) for all the available versions. These components are:

�� The CUDA toolkit is available at http://developer.download.nvidia.
com/compute/cuda/4_2/rel/toolkit/cudatoolkit_4.2.9_
win_32.msi.

�� The NVIDIA GPU Computing SDK is available at http://developer.
download.nvidia.com/compute/cuda/4_2/rel/sdk/
gpucomputingsdk_4.2.9_win_32.exe.

�� The NVIDIA CUDA Development Driver is available at http://developer.
download.nvidia.com/compute/cuda/4_2/rel/drivers/
devdriver_4.2_winvista-win7_32_301.32_general.exe.

2.	 Download and install NumPy (for 32-bit Python 2.7) and Visual Studio C++ 2008
Express (be sure to set all the system variables).

3.	 Open the file msvc9compiler.py located at /Python27/lib/distutils/. After
the line 641: ld_args.append ('/IMPLIB:' + implib_file), add the new
line ld_args.append('/MANIFEST').

4.	 Download PyCUDA from https://pypi.python.org/pypi/pycuda.

5.	 Open Visual Studio 2008 Command Prompt, click on Start, go to All Programs |
Microsoft Visual Studio 2008 | Visual Studio Tools | Visual Studio Command
Prompt (2008), and follow the given steps:

1.	 Go in the PyCuda directory.

2.	 Execute python configure.py.

3.	 Edit the created file siteconf.py:

BOOST_INC_DIR = []
BOOST_LIB_DIR = []
BOOST_COMPILER = 'gcc43'
USE_SHIPPED_BOOST = True
BOOST_PYTHON_LIBNAME = ['boost_python']
BOOST_THREAD_LIBNAME = ['boost_thread']
CUDA_TRACE = False
CUDA_ROOT = 'C:\\Program Files\\NVIDIA GPU Computing
Toolkit\\CUDA\\v4.2'
CUDA_ENABLE_GL = False
CUDA_ENABLE_CURAND = True
CUDADRV_LIB_DIR = ['${CUDA_ROOT}/lib/Win32']
CUDADRV_LIBNAME = ['cuda']

http://developer.download.nvidia.com/compute/cuda/4_2/rel/toolkit/cudatoolkit_4.2.9_win_32.msi
http://developer.download.nvidia.com/compute/cuda/4_2/rel/toolkit/cudatoolkit_4.2.9_win_32.msi
http://developer.download.nvidia.com/compute/cuda/4_2/rel/toolkit/cudatoolkit_4.2.9_win_32.msi
http://developer.download.nvidia.com/compute/cuda/4_2/rel/drivers/devdriver_4.2_winvista-win7_32_301.32_general.exe
http://developer.download.nvidia.com/compute/cuda/4_2/rel/drivers/devdriver_4.2_winvista-win7_32_301.32_general.exe
http://developer.download.nvidia.com/compute/cuda/4_2/rel/drivers/devdriver_4.2_winvista-win7_32_301.32_general.exe
https://pypi.python.org/pypi/pycuda

Chapter 6

205

CUDART_LIB_DIR = ['${CUDA_ROOT}/lib/Win32']
CUDART_LIBNAME = ['cudart']
CURAND_LIB_DIR = ['${CUDA_ROOT}/lib/Win32']
CURAND_LIBNAME = ['curand']
CXXFLAGS = ['/EHsc']
LDFLAGS = ['/FORCE']

6.	 Finally, install PyCUDA with the following commands in VS2008 Command Prompt:

python setup.py build
python setup.py install

The CUDA toolkit download page

How to do it…
The present example has a dual function. The first is to verify that PyCUDA is properly installed
and the second is to read and print the characteristics of the GPU cards:

import pycuda.driver as drv
drv.init()
print "%d device(s) found." % drv.Device.count()
for ordinal in range(drv.Device.count()):

GPU Programming with Python

206

 dev = drv.Device(ordinal)
 print "Device #%d: %s" % (ordinal, dev.name())
 print " Compute Capability: %d.%d" % dev.compute_capability()
 print " Total Memory: %s KB" % (dev.total_memory()//(1024))

After running the code, we should have an output like this:

C:\ Python CookBook\ Chapter 6 - GPU Programming with Python\Chapter 6 -
codes>python PyCudaInstallation.py

1 device(s) found.

Device #0: GeForce GT 240

 Compute Capability: 1.2

 Total Memory: 1048576 KB

How it works…
The execution is pretty simple. In the first line of code, pycuda.driver is imported and then
initialized:

import pycuda.driver as drv
drv.init()

The pycuda.driver module exposes the driver level to the programming interface of CUDA,
which is more flexible than the CUDA C "runtime-level" programming interface, and it has a few
features that are not present at runtime.

Then, it cycles into drv.Device.count(), and for each GPU card found, the name of the
cards and main characteristics (computing capability and total memory) are printed:

print "Device #%d: %s" % (ordinal, dev.name())
print " Compute Capability: %d.%d" % dev.compute_capability()
print " Total Memory: %s KB" % (dev.total_memory()//(1024))

See also
ff PyCUDA is developed by Andreas Klöckner (http://mathema.tician.de/

aboutme/). For any other information concerning PyCUDA, you can refer to
http://documen.tician.de/pycuda/.

http://mathema.tician.de/aboutme/
http://mathema.tician.de/aboutme/
http://documen.tician.de/pycuda/

Chapter 6

207

How to build a PyCUDA application
The PyCUDA programming model is designed for the common execution of a program on a
CPU and GPU, so as to allow you to perform the sequential parts on the CPU and the numeric
parts, which are more intensive on the GPU. The phases to be performed in the sequential
mode are implemented and executed on the CPU (host), while the steps to be performed in
parallel are implemented and executed on the GPU (device). The functions to be performed in
parallel on the device are called kernels. The steps to execute a generic function kernel on the
device are as follows:

1.	 The first step is to allocate the memory on the device.

2.	 Then we need to transfer data from the host memory to that allocated on the device.

3.	 Next, we need to run the device:

1.	 Run the configuration.

2.	 Invoke the kernel function.

4.	 Then, we need to transfer the results from the memory on the device to the host
memory.

5.	 Finally, release the memory allocated on the device.

GPU MEMORYGPU

CPU CPU MEMORY

Transfer
Memory
to CPU

Running Device

Allocate Memory

Transfer
Memory
to GPU

The PyCUDA programming model

How to do it…
To show the PyCUDA workflow, let's consider a 5×5 random array and the following procedure:

1.	 Create the 5×5 array on the CPU.

2.	 Transfer the array to the GPU.

3.	 Perform a task on the array in the GPU (double all the items in the array).

4.	 Transfer the array from the GPU to the CPU.

5.	 Print the results.

GPU Programming with Python

208

The code for this is as follows:

import pycuda.driver as cuda
import pycuda.autoinit
from pycuda.compiler import SourceModule

import numpy

a = numpy.random.randn(5,5)
a = a.astype(numpy.float32)

a_gpu = cuda.mem_alloc(a.nbytes)
cuda.memcpy_htod(a_gpu, a)

mod = SourceModule("""
 __global__ void doubleMatrix(float *a)
 {
 int idx = threadIdx.x + threadIdx.y*4;
 a[idx] *= 2;
 }
 """)

func = mod.get_function("doubleMatrix")
func(a_gpu, block=(5,5,1))

a_doubled = numpy.empty_like(a)
cuda.memcpy_dtoh(a_doubled, a_gpu)
print ("ORIGINAL MATRIX")
print a
print ("DOUBLED MATRIX AFTER PyCUDA EXECUTION")
print a_doubled

The example output should be like this:

C:\Python CookBook\Chapter 6 - GPU Programming with Python\ >python
PyCudaWorkflow.py

ORIGINAL MATRIX

[[-0.59975582 1.93627465 0.65337795 0.13205571 -0.46468592]

 [0.01441949 1.40946579 0.5343408 -0.46614054 -0.31727529]

 [-0.06868593 1.21149373 -0.6035406 -1.29117763 0.47762445]

 [0.36176383 -1.443097 1.21592784 -1.04906416 -1.18935871]

 [-0.06960868 -1.44647694 -1.22041082 1.17092752 0.3686313]]

Chapter 6

209

DOUBLED MATRIX AFTER PyCUDA EXECUTION

[[-1.19951165 3.8725493 1.3067559 0.26411143 -0.92937183]

 [0.02883899 2.81893158 1.0686816 -0.93228108 -0.63455057]

 [-0.13737187 2.42298746 -1.2070812 -2.58235526 0.95524889]

 [0.72352767 -1.443097 1.21592784 -1.04906416 -1.18935871]

 [-0.06960868 -1.44647694 -1.22041082 1.17092752 0.3686313]]

How it works…
The preceding code starts with the following imports:

import pycuda.driver as cuda
import pycuda.autoinit
from pycuda.compiler import SourceModule

The import pycuda.autoinit statement automatically picks a GPU to run based on
its availability and number. It also creates a GPU context for the subsequent code to run.
If needed, both the chosen device and the created context are available from pycuda.
autoinit as importable symbols, whereas the SourceModule component is the object
where a C-like code for the GPU must be written.

The first step is to generate the input 5×5 matrix. Since most GPU computations involve large
arrays of data, the numpy module must be imported:

import numpy
a = numpy.random.randn(5,5)

Then, the items in the matrix are converted into a single precision mode, many NVIDIA cards
support only a single precision:

a = a.astype(numpy.float32)

The first operation that needs to be done in order to implement a GPU is to load the input
array from the host memory (CPU) to the device (GPU). This is done at the beginning of the
operation and consists of two steps that are performed by invoking the following two functions
provided PyCUDA:

ff The memory allocation on the device is performed via the function cuda.mem_
alloc. The device and host memory may not ever communicate while performing a
function kernel. This means that, to run a function parallelly on the device, the data
related to it must be present in the memory of the device itself. Before you copy data
from the host memory to the device memory, you must allocate the memory required
on the device: a_gpu = cuda.mem_alloc(a.nbytes).

GPU Programming with Python

210

ff Copy the matrix from the host memory to that of the device with the following
function:

call cuda.memcpy_htod : cuda.memcpy_htod(a_gpu, a).

Also note that a_gpu is one-dimensional and on the device, we need to handle it as such.
All these operations do not require the invocation of a kernel and are made directly by the
main processor. The SourceModule entity serves to define the (C-like) kernel function
doubleMatrix that multiplies each array entry by 2:

mod = SourceModule("""
 __global__ void doubleMatrix(float *a)
 {
 int idx = threadIdx.x + threadIdx.y*4;
 a[idx] *= 2;
 }
 """)

The __global__ qualifier directive indicates that the function doubleMatrix will be
processed on the device. Only the CUDA nvcc compiler will perform this task.

Let's take a look at the function's body:

int idx = threadIdx.x + threadIdx.y*4;

The idx parameter is the matrix index identified by the thread coordinates threadIdx.x
and threadIdx.y. Then, the element matrix with the index idx is multiplied by 2:

 a[idx] *= 2;

Note that this kernel function will be executed once in 16 different threads. Both the variables
threadIdx.x and threadIdx.y contain indices between 0 and 3 and the pair is different
for each thread. Threads scheduling is directly linked to the GPU architecture and its intrinsic
parallelism. A block of threads is assigned to a single Streaming Multiprocessor (SM), and
the threads are further divided into groups called warps. The size of a warp depends on the
architecture under consideration. The threads of the same warp are managed by the control
unit called the warp scheduler. To take full advantage of the inherent parallelism of SM,
the threads of the same warp must execute the same instruction. If this condition does not
occur, we speak of the divergence of threads. If the same warp threads execute different
instructions, the control unit cannot handle all the warps. It must follow the sequences of
instructions for every single thread (or for homogeneous subsets of threads) in a serial mode.
Let's observe how the thread block is divided into various warps, threads are divided by the
value of threadIdx.

The threadIdx structure consists of three fields: threadIdx.x, threadIdx.y, and
threadIdx.z.

Chapter 6

211

T0,0 T1,0 T2,0 T3,0 T4,0

T0,1 T1,1 T2,1 T3,1 T4,1

T0,2 T1,2 T2,2 T3,2 T4,2

T0,3 T1,3 T2,3 T3,3 T4,3

T0,4 T1,4 T2,4 T3,4 T4,4

T0,0 T4,0 T0,1 T4,1 T0,2 T4,2 T0,3 T1,3 T0,4 T4,4

Thread blocks subdivision: T(x,y) where x = threadIdx.x and y = threadIdx.y

We can see that the code in the kernel function will be automatically compiled by the nvcc
CUDA compiler. If there are no errors, the pointer of this compiled function will be created. In
fact, mod.get_function("doubleMatrix") returns an identifier to the func function
that we created:

func = mod.get_function("doubleMatrix ")

To perform a function on the device, you must first configure the execution appropriately. This
means that you need to determine the size of the coordinates to identify and distinguish the
thread belonging to different blocks. This will be done using the block parameter inside the
func call:

func(a_gpu, block = (5, 5, 1))

The block = (5, 5, 1) function tells us that we are calling a kernel function with the a_
gpu linearized input matrix and a single thread block of the size 5 threads in the x direction,
5 threads in the y direction, and 1 thread in the z direction, 16 threads in total. This structure
is designed with the parallel implementation of the algorithm in mind. The division of the
workload results in an early form of parallelism that is sufficient and necessary to make use of
the computing resources provided by the GPU. Once you've configured the kernel's invocation,
you can invoke the kernel function that executes instructions parallelly on the device. Each
thread executes the same code kernel.

After the computation in the GPU device, we use an array to store the results:

a_doubled = numpy.empty_like(a)
cuda.memcpy_dtoh(a_doubled, a_gpu)

This will be printed as follows:

print a
print a_doubled

GPU Programming with Python

212

There's more…
A warp executes one common instruction at a time. So, to maximize the efficiency of the
structure all must agree with the same thread's path of execution. When more than one
thread block is assigned to a multiprocessor to run, they are partitioned into warps that are
scheduled by a component called the warp scheduler.

Understanding the PyCUDA memory model
with matrix manipulation

A PyCUDA program, to make the most of available resources, should respect the rules
dictated by the structure and the internal organization of the SM that imposes constraints on
the performance of the thread. In particular, the knowledge and correct use of the various
types of memory that the GPU makes available is fundamental in order to achieve maximum
efficiency in the programs. In the CUDA-capable GPU card, there are four types of memories,
which are defined, as follows:

ff Registers: In this, a register is allocated for each thread. This can only access its
register but not the registers of other threads, even if they belong to the same block.

ff The shared memory: Here, each block has its own shared memory between the
threads that belong to it. Even this memory is extremely fast.

ff The constant memory: All threads in a grid have constant access to the memory,
but can be accessed only while reading. The data present in it persists for the entire
duration of the application.

ff The global memory: All threads of all the grids (so all kernels) have access to the
global memory. The constant memory data present in it persists for the entire
duration of the application.

Host

CONSTANT MEMORY

GLOBAL MEMORY

Thread
(0,0)

Registers

SHARED MEMORY

BLOCK(0,0)

(DEVICE) GRID

Registers

Thread
(1,0)

Thread
(0,0)

Registers

SHARED MEMORY

BLOCK(1,0)

Registers

Thread
(1,0)

The GPU memory model

Chapter 6

213

One of the key points to understand how to make the PyCUDA programs with satisfactory
performance is that not all memory is the same, but you have to try to make the best of each
type of memory. The basic idea is to minimize the global memory access via the use of the
shared memory. The technique is usually used to divide the domain/codomain of the problem
in such a way so that we enable a block of threads to perform its elaborations in a closed
subset of data. In this way, the threads adhering to the concerned block will work together to
load the shared global memory area that is to be processed in the memory, to then proceed to
exploiting the higher speed of this memory zone.

The basic steps to be performed for each thread will then be as follows:

1.	 Load data from the global memory to the shared memory.

2.	 Synchronize all the threads of the block so that everyone can read safety positions
shared memory filled by other threads.

3.	 Process the data of the shared memory.

4.	 Make a new synchronization as necessary to ensure that the shared memory has
been updated with the results.

5.	 Write the results in the global memory.

How to do it…
To better understand this technique, we'll present an example which will clarify this approach.
This example is based on the product of two matrices. The previous figure shows the product
of matrices in the standard way and the correspondent sequential code to calculate where
each element must be loaded from a row and a column of the matrix input:

void SequentialMatrixMultiplication(float*M,float *N,float *P, int
width)
{
 for (int i=0; i< width; ++i)
 for(int j=0;j < width; ++j) {
 float sum = 0;
 for (int k = 0 ; k < width; ++k) {
 float a = M[I * width + k];
 float b = N[k * width + j];
 sum += a * b;
 }
 P[I * width + j] = sum;
 }
}

GPU Programming with Python

214

If each thread was entrusted with the task of calculating an element of the matrix, the
memory accesses would dominate the execution time of the algorithm. What we can do is rely
on a block of threads for the task of calculating a submatrix of output so that it is possible to
reuse the data loaded from the global memory and to collaborate threads in order to minimize
the memory accesses for each of them.

The following example shows this technique:

import numpy as np
from pycuda import driver, compiler, gpuarray, tools

-- initialize the device
import pycuda.autoinit

kernel_code_template = """
__global__ void MatrixMulKernel(float *a, float *b, float *c)
{
 int tx = threadIdx.x;
 int ty = threadIdx.y;
 float Pvalue = 0;
 for (int k = 0; k < %(MATRIX_SIZE)s; ++k) {
 float Aelement = a[ty * %(MATRIX_SIZE)s + k];
 float Belement = b[k * %(MATRIX_SIZE)s + tx];
 Pvalue += Aelement * Belement;
 }

 c[ty * %(MATRIX_SIZE)s + tx] = Pvalue;
}
"""
MATRIX_SIZE = 5

a_cpu = np.random.randn(MATRIX_SIZE, MATRIX_SIZE).astype(np.float32)
b_cpu = np.random.randn(MATRIX_SIZE, MATRIX_SIZE).astype(np.float32)
c_cpu = np.dot(a_cpu, b_cpu)
a_gpu = gpuarray.to_gpu(a_cpu)
b_gpu = gpuarray.to_gpu(b_cpu)

c_gpu = gpuarray.empty((MATRIX_SIZE, MATRIX_SIZE), np.float32)

kernel_code = kernel_code_template % {
 'MATRIX_SIZE': MATRIX_SIZE
 }

Chapter 6

215

mod = compiler.SourceModule(kernel_code)

matrixmul = mod.get_function("MatrixMulKernel")

matrixmul(
 a_gpu, b_gpu,
 c_gpu,
 block = (MATRIX_SIZE, MATRIX_SIZE, 1),
)

print the results
print "-" * 80
print "Matrix A (GPU):"
print a_gpu.get()

print "-" * 80
print "Matrix B (GPU):"
print b_gpu.get()

print "-" * 80
print "Matrix C (GPU):"
print c_gpu.get()

print "-" * 80
print "CPU-GPU difference:"
print c_cpu - c_gpu.get()

np.allclose(c_cpu, c_gpu.get())

The example output will be as follows:

C:\Python CookBook\Chapter 6 - GPU Programming with Python\python
PyCudaMatrixManipulation.py

Matrix A (GPU):

[[0.90780383 -0.4782407 0.23222363 -0.63184392 1.05509627]

 [-1.27266967 -1.02834761 -0.15528528 -0.09468858 1.037099]

 [-0.18135822 -0.69884419 0.29881889 -1.15969539 1.21021318]

 [0.20939326 -0.27155793 -0.57454145 0.1466181 1.84723163]

 [1.33780348 -0.42343542 -0.50257754 -0.73388749 -1.883829]]

GPU Programming with Python

216

Matrix B (GPU):

[[0.04523897 0.99969769 -1.04473436 1.28909719 1.10332143]

 [-0.08900332 -1.3893919 0.06948703 -0.25977209 -0.49602833]

 [-0.6463753 -1.4424541 -0.81715286 0.67685211 -0.94934392]

 [0.4485206 -0.77086055 -0.16582981 0.08478995 1.26223004]

 [-0.79841441 -0.16199949 -0.35969591 -0.46809086 0.20455229]]

Matrix C (GPU):

[[-1.19226956 1.55315971 -1.44614291 0.90420711 0.43665022]

 [-0.73617989 0.28546685 1.02769876 -1.97204924 -0.65403283]

 [-1.62555301 1.05654192 -0.34626681 -0.51481217 -1.35338223]

 [-1.0040834 1.00310731 -0.4568972 -0.90064859 1.47408712]

 [1.59797418 3.52156591 -0.21708387 2.31396151 0.85150564]]

CPU-GPU difference:

[[0.00000000e+00 0.00000000e+00 0.00000000e+00 -5.96046448e-08

 0.00000000e+00]

 [0.00000000e+00 5.96046448e-08 0.00000000e+00 0.00000000e+00

 5.96046448e-08]

 [-1.19209290e-07 2.38418579e-07 0.00000000e+00 -5.96046448e-08

 0.00000000e+00]

 [0.00000000e+00 0.00000000e+00 -2.98023224e-08 -5.96046448e-08

 0.00000000e+00]

 [1.19209290e-07 0.00000000e+00 0.00000000e+00 0.00000000e+00

 0.00000000e+00]]

How it works…
Let's consider the PyCUDA programming workflow. First of all, we must prepare the input
matrix and the output matrix to store the results:

MATRIX_SIZE = 2
a_cpu = np.random.randn(MATRIX_SIZE, MATRIX_SIZE).astype(np.float32)
b_cpu = np.random.randn(MATRIX_SIZE, MATRIX_SIZE).astype(np.float32)
c_cpu = np.dot(a_cpu, b_cpu)

Chapter 6

217

Then, we transfer these matrixes in the GPU device with the PyCUDA function gpuarray.
to_gpu():

a_gpu = gpuarray.to_gpu(a_cpu)
b_gpu = gpuarray.to_gpu(b_cpu)
c_gpu = gpuarray.empty((MATRIX_SIZE, MATRIX_SIZE), np.float32)

The core of the algorithm is the kernel function:

__global__ void MatrixMulKernel(float *a, float *b, float *c)
{
 int tx = threadIdx.x;
 int ty = threadIdx.y;
 float Pvalue = 0;

 for (int k = 0; k < %(MATRIX_SIZE)s; ++k) {
 float Aelement = a[ty * %(MATRIX_SIZE)s + k];
 float Belement = b[k * %(MATRIX_SIZE)s + tx];
 Pvalue += Aelement * Belement;
 }

 c[ty * %(MATRIX_SIZE)s + tx] = Pvalue;
}

Note that the __global__ keyword specifies that this function is a kernel function, and it
must be called from a host to generate the thread hierarchy on the device.

The threadIdx.x and threadIdy.y are the threads indexes in the grid. We also note
again that all these threads execute the same kernel code, so different threads will have
different values with different thread coordinates. In this parallel version, the loop variables i
and j of the sequential version (refer to the code in the How to do it section) are now replaced
with threadIdx.x and threadIdx.y. The loop iteration through these indexes is simply
replaced by these thread indexes, so in the parallel version, we have only one loop iteration.
When the kernel MatrixMulKernel is invoked, it is executed as a grid of the size 2×2 of
parallel threads:

mod = compiler.SourceModule(kernel_code)
matrixmul = mod.get_function("MatrixMulKernel")
matrixmul(
 a_gpu, b_gpu,
 c_gpu,
 block = (MATRIX_SIZE, MATRIX_SIZE, 1),
)

GPU Programming with Python

218

Each CUDA thread grid typically comprises of thousands to millions of lightweight GPU threads
per kernel invocation. Creating enough threads to fully utilize the hardware often requires
a large amount of data parallelism; for example, each element of a large array might be
computed in a separate thread.

Finally, we print out the results to verify that the computation is ok and report the differences
between the c_cpu and c_gpu matrix products:

print "-" * 80
print "CPU-GPU difference:"
print c_cpu - c_gpu.get()

np.allclose(c_cpu, c_gpu.get())

Kernel invocations with GPUArray
In the previous recipe, we saw how to invoke a kernel function using the class:

pycuda.compiler.SourceModule(kernel_source, nvcc="nvcc", options=None,
other_options)

It creates a module from the CUDA source code called kernel_source. Then, the NVIDIA
nvcc compiler is invoked with options to compile the code.

However, PyCUDA introduces the class pycuda.gpuarray.GPUArray that provides a high-
level interface to perform calculations with CUDA:

class pycuda.gpuarray.GPUArray(shape, dtype, *, allocator=None,
order="C")

This works in a similar way to numpy.ndarray, which stores its data and performs its
computations on the compute device. The shape and dtype arguments work exactly as in
NumPy.

All the arithmetic methods in GPUArray support the broadcasting of scalars. The creation of
gpuarray is quite easy. One way is to create a NumPy array and convert it, as shown in the
following code:

>>> import pycuda.gpuarray as gpuarray

>>> from numpy.random import randn

>>> from numpy import float32, int32, array

>>> x = randn(5).astype(float32)

>>> x_gpu = gpuarray.to_gpu(x)

Chapter 6

219

You can print gpuarray as you do normally:

>>> xarray([-0.24655211, 0.00344609, 1.45805557, 0.22002029,
1.28438667])

>>> x_gpuarray([-0.24655211, 0.00344609, 1.45805557, 0.22002029,
1.28438667])

How to do it…
The following example represents not only an easy introduction, but also a common use case
of GPU computations, perhaps in the form of an auxiliary step between other calculations. The
script for this is as follows:

import pycuda.gpuarray as gpuarray
import pycuda.driver as cuda
import pycuda.autoinit
import numpy

a_gpu = gpuarray.to_gpu(numpy.random.randn(4,4).astype(numpy.float32))
a_doubled = (2*a_gpu).get()
print a_doubled
print a_gpu

The output is (running the function from Python IDLE) as follows:

C \Python Parallel Programming INDEX\Chapter 6 - GPU Programming wit
h Python\python PyCudaGPUArray.py
ORIGINAL MATRIX
[[-0.60254627 1.16694951 1.48510635 -1.46718287 2.11878467]
 [2.63159704 -3.6541729 2.44197178 -1.12101364 0.22178674]
 [-0.87713826 -1.9803952 0.98741448 -2.83859134 -1.55612338]
 [0.79552311 -0.25934356 -1.12207913 -0.21778747 -4.0459609]
 [-1.74858582 1.34928024 -2.55908132 2.22259712 0.82242775]]

DOUBLED MATRIX AFTER PyCUDA EXECUTION USING GPUARRAY CALL
[[-0.30127314 0.58347476 0.74255317 -0.73359144 1.05939233]
 [1.31579852 -1.82708645 1.22098589 -0.56050682 0.11089337]
 [-0.43856913 -0.9901976 0.49370724 -1.41929567 -0.77806169]
 [0.39776155 -0.12967178 -0.56103957 -0.10889374 -2.02298045]
 [-0.87429291 0.67464012 -1.27954066 1.11129856 0.41121387]]

GPU Programming with Python

220

How it works…
Of course, we have to import all the required modules:

import pycuda.gpuarray as gpuarray
import pycuda.driver as cuda
import pycuda.autoinit
import numpy

The a_gpu input matrix contains all the items that are generated randomly. To perform the
computation in the GPU, (double all the items in the matrix) we have only one statement:

a_doubled = (2*a_gpu).get()

The result is put in the a_doubled matrix (using the get() method). Finally, the result is
printed as follows:

print a_doubled

There's more…
The pycuda.gpuarray.GPUArray supports all arithmetic operators and a number
of methods and functions, all patterned after the corresponding functionality in NumPy.
In addition to this, many special functions are available in pycuda.cumath. The arrays
of approximately uniformly distributed random numbers may be generated using the
functionality in pycuda.curandom.

Evaluating element-wise expressions with
PyCUDA

The PyCuda.elementwise.ElementwiseKernel function allows us to execute the kernel
on complex expressions that are made of one or more operands into a single computational
step, which is as follows:

ElementwiseKernel(arguments,operation,name,optional_parameters)

Here, we note that:

ff arguments: This is a C argument list of all the parameters that are involved in the
kernel's execution.

ff operation: This is the operation that is to be executed on the specified arguments.
If the argument is a vector, each operation will be performed for each entry.

ff name: This is the kernel's name.

ff optional_parameters: These are the compilation directives that are not used in
the following example.

Chapter 6

221

How to do it…
In this example, we'll show you the typical use of the ElementwiseKernel call. We have two
vectors of 50 elements, input_vector_a and input_vector_b, that are built in a random
way. The task here is to evaluate their linear combination.

The code for this is as follows:

import pycuda.autoinit
import numpy
from pycuda.curandom import rand as curand
from pycuda.elementwise import ElementwiseKernel
import numpy.linalg as la

input_vector_a = curand((50,))
input_vector_b = curand((50,))
mult_coefficient_a = 2
mult_coefficient_b = 5

linear_combination = ElementwiseKernel(
 "float a, float *x, float b, float *y, float *c",
 "c[i] = a*x[i] + b*y[i]",
 "linear_combination")

linear_combination_result = gpuarray.empty_like(input_vector_a)
linear_combination(mult_coefficient_a, input_vector_a,\
 mult_coefficient_b, input_vector_b,\
 linear_combination_result)

print ("INPUT VECTOR A =")
print (input_vector_a)

print ("INPUT VECTOR B = ")
print (input_vector_b)

print ("RESULTING VECTOR C = ")
print linear_combination_result

print ("CHECKING THE RESULT EVALUATING THE DIFFERENCE VECTOR BETWEEN C
AND THE LINEAR COMBINATION OF A AND B")
print ("C - (%sA + %sB) = "%(mult_coefficient_a,mult_coefficient_b))

GPU Programming with Python

222

print (linear_combination_result - (mult_coefficient_a*input_vector_a\
 + mult_coefficient_b*input_
vector_b))
assert la.norm((linear_combination_result - \
 (mult_coefficient_a*input_vector_a +\
 mult_coefficient_b*input_vector_b)).get()) < 1e-5

The output for this from Command Prompt is as follows:

C:\Python CookBook\Chapter 6 - GPU Programming with Python\ >python
PyCudaElementWise.py
INPUT VECTOR A =
[0.73191601 0.7004351 0.87159222 0.49621502 0.19640177
0.75579387
 0.35208538 0.97497243 0.36948711 0.34328628 0.06811771
0.04270195
 0.15690483 0.39899695 0.2927697 0.36201504 0.09503061
0.45646626
 0.35608584 0.01598917 0.75943208 0.49343511 0.79146844
0.33111155
 0.18454118 0.83971804 0.01466237 0.77959627 0.54659295
0.4575595
 0.55539894 0.23285247 0.14676388 0.72028935 0.87861985
0.13928016
 0.18071586 0.8029055 0.05551658 0.49400434 0.40941685
0.55373788
 0.07541087 0.55443048 0.19723719 0.72457349 0.46491891
0.65380263
 0.93845034 0.27472526]
INPUT VECTOR B =
[0.29464501 0.21645674 0.93407696 0.48678038 0.71135205
0.0588627
 0.99216938 0.879906 0.07517455 0.84360296 0.57358545
0.73907417
 0.06841258 0.1816148 0.53327322 0.30980903 0.96774238
0.90884209
 0.39139062 0.97678316 0.41284555 0.17893282 0.47421032
0.13706622
 0.62038481 0.22524452 0.67131585 0.06617502 0.02492006
0.99894243
 0.28288943 0.55505407 0.14323047 0.54854101 0.2742492
0.01146096
 0.45902726 0.03561942 0.78358203 0.32014725 0.13187674
0.42909116
 0.2633251 0.07679776 0.80823648 0.57373965 0.40740359
0.26024994
 0.61452144 0.46388686]

Chapter 6

223

RESULTING VECTOR C =
[2.93705702 2.48315382 6.41356945 3.42633176 3.94956398
1.80590129
 5.6650176 6.34947491 1.11484694 4.90458727 3.00416279
3.78077483
 0.65587258 1.70606792 3.25190544 2.2730751 5.02877283
5.45714283
 2.6691246 4.91589403 3.58309197 1.88153434 3.95398855
1.34755421
 3.47100639 2.80565882 3.38590407 1.89006758 1.21778619
5.90983152
 2.52524495 3.24097538 1.00968003 4.18328381 3.12848568
0.33586511
 2.65656805 1.78390813 4.02894306 2.58874488 1.47821736
3.25293159
 1.46744728 1.49284983 4.43565702 4.31784534 2.96685553
2.60885501
 4.94950771 2.86888456]
CHECKING THE RESULT EVALUATING THE DIFFERENCE VECTOR BETWEEN C AND THE
LINEAR COMBINATION OF A AND B
C - (2A + 5B) =
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

How it works…
After the usual import, we note:

from pycuda.elementwise import ElementwiseKernel

We must build all the elements that are to be manipulated. Let's remember that the task to
be done is to evaluate a linear combination of two vectors input_vector_a and input_
vector_b. These two vectors are initialized using the PyCUDA curandom library, which is
used for the generation of pseudorandom numbers:

To import the library, use the following code:

from pycuda.curandom import rand as curand

To define the random vector (50 elements), use:

input_vector_a = curand((50,))
input_vector_b = curand((50,))

GPU Programming with Python

224

We defined the two coefficients of multiplication that are to be used in the calculation of the
linear combination of these two vectors:

mult_coefficient_a = 2
mult_coefficient_b = 5

The core example is the kernel invocation for which we use the PyCUDA
ElementwiseKernel construct, shown as follows:

linear_combination = ElementwiseKernel(
 "float a, float *x, float b, float *y, float *c",
 "c[i] = a*x[i] + b*y[i]",
 "linear_combination")

The first line of the argument list (in a C-style definition) defines all the parameters to be
inserted for the calculation:

 "float a, float *x, float b, float *y, float *c",

The second line defines how to manipulate the arguments list. For each value of the index i,
a sum of these components must be evaluated:

 "c[i] = a*x[i] + b*y[i]",

The last line gives the linear_combination name to ElementwiseKernel.

After the kernel, the resulting vector is defined. It is an empty vector of the same dimension
as of the input vector:

linear_combination_result = gpuarray.empty_like(input_vector_a)
Finally evaluate the kernel:
linear_combination(mult_coefficient_a, input_vector_a,\
 mult_coefficient_b, input_vector_b,\
 linear_combination_result)

You can check the results using the following code:

assert la.norm((linear_combination_result - \
 (mult_coefficient_a*input_vector_a +\
 mult_coefficient_b*input_vector_b)).get()) < 1e-5

The assert function tests the result and triggers an error if the condition is false.

There's more…
In addition to the curand library, derived from the CUDA library, PyCUDA provides other math
libraries, so you can take a look at the libraries listed at http://documen.tician.de/
pycuda.

http://documen.tician.de/pycuda
http://documen.tician.de/pycuda

Chapter 6

225

The MapReduce operation with PyCUDA
PyCUDA provides a functionality to perform reduction operations on the GPU. This is possible
with the pycuda.reduction.ReductionKernel method:

ReductionKernel(dtype_out, arguments, map_expr ,reduce_expr,
 name,optional_parameters)

Here, we note that:

ff dtype_out: This is the output's data type. It must be specified by the numpy.dtype
data type.

ff arguments: This is a C argument list of all the parameters involved in the reduction's
operation.

ff map_expr: This is a string that represents the mapping operation. Each vector in this
expression must be referenced with the variable i.

ff reduce_expr: This is a string that represents the reduction operation. The operands
in this expression are indicated by lowercase letters, such as a, b, c, ..., z.

ff name: This is the name associated with ReductionKernel, with which the kernel is
compiled.

ff optional_parameters: These are not important in this recipe as they are the
compiler's directives.

The method executes a kernel on vector arguments (at least one), performs map_expr on
each entry of the vector argument, and then performs reduce_expr on its outcome.

How to do it…
This example shows the implementation of a dot product of two vectors (500 elements) through
an instantiation of the ReductionKernel class. The dot product, or scalar product, is an
algebraic operation that takes two equal length sequences of numbers (usually coordinate
vectors) and returns a single number that is the sum of the products of the corresponding
entries of the two sequences of numbers. This is a typical MapReduce operation, where the Map
operation is an index-by-index product and the reduction operation is the sum of all the products.

The PyCUDA code for this task is very short:

import pycuda.gpuarray as gpuarray
import pycuda.autoinit
import numpy
from pycuda.reduction import ReductionKernel

vector_length = 400

GPU Programming with Python

226

input_vector_a = gpuarray.arange(vector_length, dtype=numpy.int)
input_vector_b = gpuarray.arange(vector_length, dtype=numpy.int)
dot_product = ReductionKernel(numpy.int,
 arguments="int *x, int *y",
 map_expr="x[i]*y[i]",
 reduce_expr="a+b", neutral="0")

dot_product = dot_product (input_vector_a, input_vector_b).get()

print("INPUT VECTOR A")
print input_vector_a

print("INPUT VECTOR B")
print input_vector_b

print("RESULT DOT PRODUCT OF A * B")
print dot_product

Running the code from Command Prompt, you will have an output like this:

C:\Python CookBook\Chapter 6 - GPU Programming with Python\>python
PyCudaReductionKernel.py

INPUT VECTOR A

[0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89

 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107

 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125

 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161

 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179

 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197

 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215

 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233

 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251

 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269

Chapter 6

227

 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287

 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305

 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323

 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341

 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359

 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377

 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395

 396 397 398 399]

INPUT VECTOR B

[0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89

 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107

 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125

 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161

 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179

 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197

 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215

 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233

 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251

 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269

 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287

 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305

 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323

 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341

 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359

 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377

 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395

 396 397 398 399]

RESULT DOT PRODUCT OF A * B

21253400

GPU Programming with Python

228

How it works…
In this script, the input vectors input_vector_a and input_vector_b are integer
vectors. Each of them, as you can see from the preceding output result, ranges from 0 to 399
elements (400 elements in total):

vector_length = 400

input_vector_a = gpuarray.arange(vector_length, dtype=numpy.int)
input_vector_b = gpuarray.arange(vector_length, dtype=numpy.int)

After the definition of the inputs, we can define the MapReduce operation by calling the
ReductionKernel PyCUDA function:

dot_product = ReductionKernel(numpy.int,
 arguments="int *x, int *y",
 map_expr="x[i]*y[i]",
 reduce_expr="a+b", neutral="0")

This kernel operation is defined as follows:

ff The first entry in the argument list tells us that the output will be an integer

ff The second entry defines the data types for the inputs (array of integers) in a C-like
notation

ff The third entry is the map operation, which is the product of the ith element of the
two vectors

ff The fourth operation is the reduction operation, which is the sum of all the products

Observe that the end result of calling the ReductionKernel instance is a GPUArray scalar
that still resides in the GPU. It can be brought to the CPU by a call to its get method or can be
used in place of the GPU.

Then, the kernel function is invocated, as shown:

dot_product = dot_product (input_vector_a, input_vector_b).get()

The input vectors and the resulting dot product are printed out:

print input_vector_a
print input_vector_b
print dot_product

Chapter 6

229

GPU programming with NumbaPro
NumbaPro is a Python compiler that provides a CUDA-based API to write CUDA programs.
It is designed for array-oriented computing tasks, much like the widely used NumPy library.
The data parallelism in array-oriented computing tasks is a natural fit for accelerators such
as GPUs. NumbaPro understands NumPy array types and uses them to generate efficient
compiled code for execution on GPUs or multicore CPUs.

The compiler works by allowing you to specify type signatures for Python functions, which
enable compilation at runtime (called the JIT compilation).

The most important decorators are:

ff numbapro.jit: This allows a developer to write CUDA-like functions. When
encountered, the compiler translates the code under the decorator into the pseudo
assembly PTX language to be executed in the GPU.

ff numbapro.autojit: This annotates a function for a deferred compilation
procedure. This means that each function with this signature is compiled exactly
once.

ff numbapro.vectorize: This creates a so-called ufunc object (the Numpy universal
function) that takes a function and executes it parallelly in vector arguments.

ff guvectorize: This creates a so-called gufunc object (the NumPy generalized
universal function). A gufunc object may operate on entire subarrays (refer to
http://docs.continuum.io/numbapro/generalizedufuncs.html for more
references.)

All these decorators have a compiler directive called a target that selects the code generation
target. The NumbaPro compiler supports the parallel and GPU targets. The parallel target is
available to vectorize the operations, while the GPU directive offloads the computation to a
NVIDIA CUDA GPU.

Getting ready
NumbaPro is part of Anaconda Accelerate, which is a commercially licensed product
(NumbaPro is also available under a free license for academic users) from Continuum
Analytics. It is built on top of the BSD-licensed, open source Numba project, which itself relies
heavily on the capabilities of the LLVM compiler. The GPU backend of NumbaPro utilizes the
LLVM-based NVIDIA Compiler SDK.

GPU Programming with Python

230

To get started with NumbaPro, the first step is to download and install the Anaconda Python
distribution (http://continuum.io/downloads), which is a completely free, enterprise-
ready Python distribution for large-scale data processing, predictive analytics, and scientific
computing. It includes many popular packages (Numpy, Scipy, Matplotlib, iPython, and so on)
and conda, which is a powerful package manager.

Once you have Anaconda installed, you must type the following instructions from Anaconda's
Command Prompt:

> conda update conda

> conda install accelerate

> conda install numbapro

NumbaPro does not ship the CUDA driver. It is the user's responsibility to ensure that their
systems are using the latest drivers. After the installation, it's possible to perform the detection
of the CUDA library and GPU, so let's open Python from the Anaconda console and type:

import numbapro
numbapro.check_cuda()

The output of these two lines of code should be as follows (we used a 64-bit Anaconda distro):

C:\Users\Giancarlo\Anaconda>python

Python 2.7.10 |Anaconda 2.3.0 (64-bit)| (default, May 28 2015, 16:44:52)
[MSC v.1500 64 bit (AMD64)] on win32

Type "help", "copyright", "credits" or "license" for more information.

Anaconda is brought to you by Continuum Analytics.

Please check out: http://continuum.io/thanks and https://binstar.org

>>> import numbapro

Vendor: Continuum Analytics, Inc.

Package: mkl

Message: trial mode expires in 30 days

Vendor: Continuum Analytics, Inc.

Package: mkl

Message: trial mode expires in 30 days

Vendor: Continuum Analytics, Inc.

Package: numbapro

Message: trial mode expires in 30 days

>>> numbapro.check_cuda()

------------------------------libraries detection------------------------

http://continuum.io/downloads

Chapter 6

231

Finding cublas

 located at C:\Users\Giancarlo\Anaconda\DLLs\cublas64_60.dll

 trying to open library... ok

Finding cusparse

 located at C:\Users\Giancarlo\Anaconda\DLLs\cusparse64_60.dll

 trying to open library... ok

Finding cufft

 located at C:\Users\Giancarlo\Anaconda\DLLs\cufft64_60.dll

 trying to open library... ok

Finding curand

 located at C:\Users\Giancarlo\Anaconda\DLLs\curand64_60.dll

 trying to open library... ok

Finding nvvm

 located at C:\Users\Giancarlo\Anaconda\DLLs\nvvm64_20_0.dll

 trying to open library... ok

 finding libdevice for compute_20... ok

 finding libdevice for compute_30... ok

 finding libdevice for compute_35... ok

-------------------------------hardware detection------------------------

Found 1 CUDA devices

id 0 GeForce 840M [SUPPORTED]

 compute capability: 5.0

 pci device id: 0

 pci bus id: 8

Summary:

 1/1 devices are supported

PASSED

True

>>>

GPU Programming with Python

232

How to do it…
In this example, we give a demonstration of the NumbaPro compiler using the annotation
@guvectorize. In the following task, we try to execute a matrix multiplication using the
Numbapro module:

from numbapro import guvectorize
import numpy as np

@guvectorize(['void(int64[:,:], int64[:,:], int64[:,:])'],
 '(m,n),(n,p)->(m,p)')
def matmul(A, B, C):
 m, n = A.shape
 n, p = B.shape
 for i in range(m):
 for j in range(p):
 C[i, j] = 0
 for k in range(n):
 C[i, j] += A[i, k] * B[k, j]

dim = 10
A = np.random.randint(dim,size=(dim, dim))
B = np.random.randint(dim,size=(dim, dim))

C = matmul(A, B)
print("INPUT MATRIX A")
print(":\n%s" % A)
print("INPUT MATRIX B")
print(":\n%s" % B)
print("RESULT MATRIX C = A*B")
print(":\n%s" % C)

After running the code (using the Anaconda console), we should have an output like this:

INPUT MATRIX A
:
[[7 7 8 5 8 5 1 9 5 9]
 [3 5 5 4 6 7 6 5 3 1]
 [7 1 6 8 7 9 0 3 3 3]
 [7 4 4 3 7 8 1 2 1 2]
 [4 7 7 1 3 5 5 6 7 6]
 [5 0 1 5 8 4 4 4 4 9]

Chapter 6

233

 [1 3 2 0 7 3 7 2 3 4]
 [0 2 9 0 7 5 9 7 4 7]
 [7 3 7 6 5 6 4 2 2 7]
 [2 1 9 7 1 0 3 5 7 3]]
INPUT MATRIX B
:
[[2 9 8 4 2 3 9 7 3 1]
 [9 1 3 3 8 0 7 6 3 5]
 [7 4 9 6 6 5 9 7 6 6]
 [6 8 3 1 5 4 4 7 7 5]
 [6 2 5 1 2 8 6 0 5 8]
 [4 4 5 7 6 0 1 1 3 8]
 [2 7 8 6 1 9 8 4 1 6]
 [2 2 9 8 3 6 1 4 7 4]
 [9 9 6 9 3 3 3 2 4 9]
 [8 4 6 7 8 8 8 6 7 8]]

RESULT MATRIX C = A*B
:
[[368 284 402 331 304 295 361 291 327 378]
 [231 207 278 226 188 199 236 177 193 273]
 [248 247 280 217 208 190 243 198 232 279]
 [201 181 232 175 173 149 218 156 170 225]
 [297 239 331 301 239 225 290 225 229 315]
 [235 229 270 222 181 248 246 175 219 280]
 [174 142 201 166 124 185 192 108 129 217]
 [267 213 348 297 212 292 289 194 233 334]
 [266 254 305 239 228 230 303 234 232 288]
 [227 219 255 215 166 189 214 196 204 229]]

How it works…
The @guvectorize annotation works on array arguments. This decorator takes an extra
argument to specify the gufunc signature. The arguments are explained, as follows:

ff The first three arguments specify the types of data to be managed, which are the
array of integers: 'void(int64[:,:], int64[:,:], int64[:,:])'

ff The last argument of @guvectorize specifies how to manipulate the matrix
dimensions: '(m,n),(n,p)->(m,p)'

 @guvectorize(['void(int64[:,:], int64[:,:], int64[:,:])'],
 '(m,n),(n,p)->(m,p)')

GPU Programming with Python

234

In the subsequent code, we define the matmul(A, B, C) operation. It accepts the two input
matrix A and B and produces a C output matrix. According to the gufunc signature, we should
have:

A(m,n)* B(n,p) = C(m,p) where m,n,p are the matrix dimensions.

The matrix product is simply performed via three for loops along with the matrix indices:

 for i in range(m):
 for j in range(p):
 C[i, j] = 0
 for k in range(n):
 C[i, j] += A[i, k] * B[k, j]

The Numpy's function randint is used to build integers from random matrices:

dim = 10
A = np.random.randint(dim,size=(dim, dim))
B = np.random.randint(dim,size=(dim, dim))

Finally, the matmul function is called with these matrices with arguments, and the resultant
matrix is printed out:

 C = matmul(A, B)
 print("RESULT MATRIX C = A*B")
 print(":\n%s" % C)

Using GPU-accelerated libraries with
NumbaPro

NumbaPro provides a Python wrap for CUDA libraries for numerical computing. Each code
using these libraries will get a significant speedup without writing any GPU-specific code. The
libraries are explained as follows:

ff cuBLAS: This is a library developed by NVIDIA that provides the main functions of
linear algebra to run on a GPU. Like the Basic Linear Algebra Subprograms (BLAS)
library that implements the functions of linear algebra on the CPU, the cuBLAS library
classifies its functions into three levels:

�� Level 1: Vector operations

�� Level 2: Transactions between a matrix and vector

�� Level 3: Operations between matrices

Chapter 6

235

The division of these functions in the three levels is based on the number of nested
loops that are needed to perform the selected operation. More precisely, the
operations of the level are essential cycles that are geared to complete the execution
of the selected function.

ff cuFFT: This provides a simple interface to calculate the Fast Fourier Transform (FFT)
in a distributed manner on an NVIDIA GPU, enabling you to exploit the parallelism of
the GPU without having to develop your own implementation of the FFT.

ff cuRAND: This library provides the creation of quasirandom numbers. A quasirandom
number is a random number generated by a deterministic algorithm.

ff cuSPArse: This provides a set of functions for the management of sparse matrices.
Unlike the previous case, its functions are classified into four levels:

�� Level 1: These are operations between a vector that is stored in a shed and
a vector that is stored in a dense format.

�� Level 2: These are the transactions between a matrix format stored in a shed
and a vector stored in the dense format.

�� Level 3: These are the operations in a matrix format that are stored in a
shed and set of vectors that are stored in a dense format (this set can be
considered as one large dense matrix.)

�� Conversion: These are operations that allow the conversion between
different storage formats.

How to do it…
In this example, we present an implementation of GEneral Matrix Multiply (GEMM), which is
a routine to perform matrix-matrix multiplication on NVIDIA GPUs. The sequential version using
the NumPy Python module and the parallel version using the cuBLAS library will be reported.
Also, a comparison of the execution time will be made between the two algorithms.

The code for this is as follows:

import numbapro.cudalib.cublas as cublas
import numpy as np
from timeit import default_timer as timer

dim = 10

def gemm():
 print("Version 2".center(80, '='))

 A = np.random.rand(dim,dim)
 B = np.random.rand(dim, dim)

GPU Programming with Python

236

 D = np.zeros_like(A, order='F')

 print("MATRIX A :")
 print A
 print("VECTOR B :")
 print B

 # NumPy
 start = timer()
 E = np.dot(A, B)
 numpy_time = timer() - start
 print("Numpy took %f seconds" % numpy_time)

 # cuBLAS
 blas = cublas.Blas()

 start = timer()
 blas.gemm('T', 'T', dim, dim, dim, 1.0, A, B, 1.0, D)
 cuda_time = timer() - start
 print ("RESULT MATRIX EVALUATED WITH CUBLAS")
 print D
 print("CUBLAS took %f seconds" % cuda_time)
 diff = np.abs(D - E)
 print("Maximum error %f" % np.max(diff))

def main():

 gemm()

if __name__ == '__main__':
 main()

The output obtained for this will be as follows:

MATRIX A :

[[0.79582178 0.95671563 0.69251157 0.85600979 0.32826726 0.72861569

 0.20724061 0.55065641 0.2257875 0.90146437]

 [0.6742022 0.43449657 0.04862685 0.9023226 0.87598306 0.20774405

 0.15774015 0.2847742 0.81601615 0.34114773]

 [0.61500219 0.65982283 0.73493152 0.21913261 0.80862566 0.73982082

 0.84005388 0.38745489 0.676947 0.31530397]

Chapter 6

237

 [0.60694411 0.65138528 0.63773284 0.06589098 0.49177294 0.02029247

 0.9064746 0.93419845 0.14609622 0.28317855]

 [0.60166404 0.41423776 0.09938464 0.19315303 0.07374789 0.45335697

 0.2912572 0.81481984 0.65222424 0.0670377]

 [0.32192297 0.30244072 0.86595209 0.37701833 0.79095644 0.11518194

 0.88491826 0.98290063 0.62965353 0.38323725]

 [0.21512101 0.64731098 0.4079146 0.8371392 0.01398673 0.85945652

 0.0586854 0.48812094 0.3625991 0.58142603]

 [0.77378663 0.43994483 0.5620805 0.70350504 0.60589009 0.09605428

 0.25423268 0.06869655 0.13642323 0.00221422]

 [0.77808301 0.47386303 0.54323866 0.42010733 0.80652762 0.05903843

 0.63316824 0.58479485 0.45141828 0.46231481]

 [0.97122802 0.53723365 0.68688748 0.54315409 0.00883411 0.9855186

 0.53542786 0.83478941 0.27459888 0.21024639]]

VECTOR B :

[[0.17084153 0.44546677 0.21551063 0.39731923 0.00102686 0.81069924

 0.00681474 0.01126972 0.13769525 0.63437229]

 [0.81913609 0.97583768 0.52579565 0.20179695 0.24066758 0.18154282

 0.75033104 0.41878918 0.96892428 0.54358419]

 [0.10071768 0.3090773 0.94185921 0.70550442 0.10651627 0.62659408

 0.23255164 0.96166165 0.65615938 0.16991118]

 [0.84163163 0.59296382 0.12281989 0.32851275 0.78716318 0.02568872

 0.02367708 0.65485736 0.79834789 0.76747705]

 [0.90406949 0.03424157 0.01519989 0.5011444 0.63175281 0.17705116

 0.16257016 0.81357471 0.58567631 0.24503327]

 [0.62989968 0.47944669 0.86860435 0.94086568 0.24312278 0.13450463

 0.16352136 0.42323191 0.46907905 0.97772097]

 [0.44608094 0.19969488 0.01035155 0.69528549 0.07219375 0.91454669

 0.18330497 0.76095336 0.12880003 0.24301603]

 [0.37860881 0.33079438 0.19275564 0.58316669 0.35753971 0.63697732

 0.72063491 0.42698316 0.53811423 0.83682958]

 [0.42135462 0.89413827 0.00620849 0.63770542 0.29376823 0.68415057

 0.71826696 0.9748898 0.9086774 0.7084634]

 [0.08020851 0.47789158 0.45538401 0.26468263 0.84960276 0.1108932

 0.0407631 0.41811299 0.2539022 0.73346706]]

GPU Programming with Python

238

Numpy took 1.167435 seconds

RESULT MATRIX EVALUATED WITH CUBLAS

[[2.93393517 3.22653293 2.58999843 2.97688025 2.40723642 2.22561846

 1.71083261 3.20145366 3.4654546 3.9246803]

 [2.70759988 2.42236864 0.94108333 2.20715685 2.06739391 1.78390442

 1.37381915 2.80760808 2.87826551 2.88739456]

 [2.93301949 2.70921232 2.08465713 3.39447429 1.76684939 2.84034554

 1.8600905 3.70096673 3.21368161 3.20257798]

 [2.05665894 1.92477247 1.42646422 2.45288009 1.27576149 2.65682509

 1.68187918 2.6942483 2.30742661 2.35163885]

 [1.68553937 1.98030198 1.05436088 2.03107385 0.98066787 1.94328559

 1.54050405 1.8876191 2.04514196 2.49719893]

 [2.55782414 2.2600454 1.57942935 3.11991574 1.91570669 2.93236718

 1.92525406 3.76932667 3.03618471 2.87628333]

 [2.27705425 2.53777179 1.98218876 2.30511984 1.85547257 1.36423334

 1.39131705 2.43879465 2.75148098 3.14994564]

 [1.94662205 1.62822264 1.12425671 1.72230283 1.21131853 1.56748417

 0.79113948 2.08449619 2.05742732 1.82536594]

 [2.42686338 2.22641127 1.3762425 2.57727754 1.80747335 2.53040609

 1.51847658 3.05078902 2.68199133 2.72340269]

 [2.44854528 2.69315101 2.3255071 3.17886105 1.47260987 2.69597578

 1.65043895 2.79595207 2.82714486 3.58489296]]

CUBLAS took 0.004226 seconds

Maximum error 0.000000

The result obtained confirms the effectiveness of the cuBLAS library.

How it works…
In order to make a comparison between a NumPy and cuBLAS implementation of a matrix
product, we import all the required libraries:

import numbapro.cudalib.cublas as cublas
import numpy as np

Also, we define the matrix dimension:

dim = 10

Chapter 6

239

The core algorithm is the gemm() function. First, we define the input matrices:

A = np.random.rand(dim,dim)
B = np.random.rand(dim,dim)

Here, D will contain the output of the cuBLAS implementation:

 D = np.zeros_like(A, order='F')

In this example, we compare the calculation done with NumPy and cuBLAS. The NumPy
evaluation is: E = np.dot(A,B), where the matrix E will contain the dot product.

Finally, the cuBLAS implementation is as follows:

 blas = cublas.Blas()
 start = timer()
 blas.gemm('T', 'T', dim, dim, dim, 1.0, A, B, 1.0, D)
 cuda_time = timer() - start

The gemm() function is a cuBLAS level 3 function:

numbapro.cudalib.cublas.Blas.gemm(transa, transb, m, n, k, alpha,
 A, B,beta, C)

It realizes a matrix-matrix multiplication in the following form:

C = alpha * op(A) * op(B) + beta * C where op is transpose or not.

At the end of the function, we compare the two results and report the execution time (cuda_
time):

 print("CUBLAS took %f seconds" % cuda_time)
 diff = np.abs(D - E)
 print("Maximum error %f" % np.max(diff))

There's more…
In this example, we saw an application of the cuBLAS library. For more complete references,
refer to http://docs.nvidia.com/cuda/cublas/index.html and http://docs.
continuum.io/numbapro/cudalib for a complete list of CUDA function libraries wrapped
with NumbaPro.

http://docs.continuum.io/numbapro/cudalib
http://docs.continuum.io/numbapro/cudalib

GPU Programming with Python

240

Using the PyOpenCL module
Open Computing Language (OpenCL) is a framework used to develop programs that work
across heterogeneous platforms, which can be made either by the CPU or GPU that are
produced by different manufacturers. This platform was created by Apple, but has been
developed and maintained by a non-profit consortium called the Khronos Group. This
framework is the main alternative for the CUDA execution of software on a GPU, but has a
point of view that is diametrically opposed. However, CUDA makes specialization its strong
point (produced, developed, and compatible with NVIDIA), ensuring excellent performance at
the expense of portability. OpenCL offers a solution compatible with nearly all devices on the
market. Software written in OpenCL can run on processor products from all major industries,
such as Intel, NVIDIA, IBM, and AMD. OpenCL includes a language to write kernels based on
C99 (with some restrictions), allowing you to use the hardware available directly in the same
way as with CUDA-C-Fortran or CUDA. OpenCL provides functions to run highly parallel and
synchronization primitives, such as indicators for regions of memory and control mechanisms
for the different platforms of execution. The portability of OpenCL programs, however, is limited
to the ability to run the same code on different devices, and this ensures that the performance
is equally reliable. To get the best performance possible, it is fundamental that you refer to
the execution platform, optimizing the code based on the characteristics of the device. In the
following recipes, we'll examine the Python implementation of OpenCL called PyOpenCL.

Getting ready
PyOpenCL is to OpenCL what PyCUDA is to CUDA: a Python wrapper to those GPGPU platforms
(PyOpenCL can run alternatively on both NVIDIA and the AMD GPU card.) It is developed
and maintained by Andreas Klöckner. Installing PyOpenCL on Windows is easy when using
the binary package provided by Christoph Gohlke. His webpage contains Windows binary
installers for the most recent versions of hundreds of Python packages. It is of invaluable help
for those Python users that use Windows.

With these instructions, you will build a 32-bit PyOpenCL library for a Python 2.7 distro on a
Windows 7 machine with a NVIDIA GPU card:

1.	 Go to http://www.lfd.uci.edu/~gohlke/pythonlibs/#pyopencl and
download the file from pyopencl‑2015.1‑cp27‑none‑win32.whl (and the
relative dependencies if required).

2.	 Download and install the Win32 OpenCL driver (from Intel) from http://
registrationcenter.intel.com/irc_nas/5198/opencl_runtime_15.1_
x86_setup.msi.

3.	 Finally, install the pyOpenCL file from Command Prompt with the command:

pip install pyopencl‑2015.1‑cp27‑none‑win32.whl

http://www.lfd.uci.edu/~gohlke/pythonlibs/#pyopencl
pyopencl2015.1cp27nonewin32.whl
http://registrationcenter.intel.com/irc_nas/5198/opencl_runtime_15.1_x86_setup.msi
http://registrationcenter.intel.com/irc_nas/5198/opencl_runtime_15.1_x86_setup.msi
http://registrationcenter.intel.com/irc_nas/5198/opencl_runtime_15.1_x86_setup.msi

Chapter 6

241

How to do it…
In this first example, we verify that the PyOpenCL environment is correctly installed.

So, a simple script that can enumerate all major hardware features using the OpenCL library
is presented as:

import pyopencl as cl

def print_device_info() :
 print('\n' + '=' * 60 + '\nOpenCL Platforms and Devices')
 for platform in cl.get_platforms():
 print('=' * 60)
 print('Platform - Name: ' + platform.name)
 print('Platform - Vendor: ' + platform.vendor)
 print('Platform - Version: ' + platform.version)
 print('Platform - Profile: ' + platform.profile)

 for device in platform.get_devices():
 print(' ' + '-' * 56)
 print(' Device - Name: ' \
 + device.name)
 print(' Device - Type: ' \
 + cl.device_type.to_string(device.type))
 print(' Device - Max Clock Speed: {0} Mhz'\
 .format(device.max_clock_frequency))
 print(' Device - Compute Units: {0}'\
 .format(device.max_compute_units))
 print(' Device - Local Memory: {0:.0f} KB'\
 .format(device.local_mem_size/1024.0))
 print(' Device - Constant Memory: {0:.0f} KB'\
 .format(device.max_constant_buffer_size/1024.0))
 print(' Device - Global Memory: {0:.0f} GB'\
 .format(device.global_mem_size/1073741824.0))
 print(' Device - Max Buffer/Image Size: {0:.0f} MB'\
 .format(device.max_mem_alloc_size/1048576.0))
 print(' Device - Max Work Group Size: {0:.0f}'\
 .format(device.max_work_group_size))
 print('\n')

if __name__ == "__main__":
 print_device_info()

GPU Programming with Python

242

The output that shows the main characteristics of the CPU and GPU card that is installed
should be like this:

C:\Python CookBook\Chapter 6 - GPU Programming with Python\>python
PyOpenCLDeviceInfo.py

==

OpenCL Platforms and Devices

==

Platform - Name: NVIDIA CUDA

Platform - Vendor: NVIDIA Corporation

Platform - Version: OpenCL 1.1 CUDA 6.0.1

Platform - Profile: FULL_PROFILE

 --

 Device - Name: GeForce GT 240

 Device - Type: GPU

 Device - Max Clock Speed: 1340 Mhz

 Device - Compute Units: 12

 Device - Local Memory: 16 KB

 Device - Constant Memory: 64 KB

 Device - Global Memory: 1 GB

==

Platform - Name: Intel(R) OpenCL

Platform - Vendor: Intel(R) Corporation

Platform - Version: OpenCL 1.2

Platform - Profile: FULL_PROFILE

 --

 Device - Name: Intel(R) Core(TM)2 Duo CPU E6550 @ 2.33GHz

 Device - Type: CPU

 Device - Max Clock Speed: 2330 Mhz

 Device - Compute Units: 2

 Device - Local Memory: 32 KB

 Device - Constant Memory: 128 KB

 Device - Global Memory: 2 GB

Chapter 6

243

How it works…
The code is very simple. In the first line, we import the pyopencl module:

import pyopencl as cl

Then, the platform.get_devices() method is used to get a list of devices. For each
device, the set of its main features are printed on the screen:

ff The name and device type

ff Max clock speed

ff Compute units

ff Local/constant/global memory

How to build a PyOpenCL application
As for programming with PyCUDA, the first step to build a program for PyOpenCL is the
encoding of the host application. In fact, it is performed on the host computer (typically,
the user's PC) and then it dispatches the kernel application on the connected devices (GPU
cards).

The host application must contain five data structures:

ff Device: This identifies the hardware where the kernel code must be executed. A
PyOpenCL application can be executed on CPU and GPU cards but also in embedded
devices, such as Field Programmable Gate Array (FPGA).

ff Program: This is a group of kernels. A program selects the kernel that must be
executed on the device.

ff Kernel: This is the code to be executed on the device. A kernel is essentially a C-like
function that enables it to be compiled for execution on any device that supports
OpenCL drivers. A kernel is the only way the host can call a function that will run on a
device. When the host invokes a kernel, many work items start running on the device.
Each work item runs the code of the kernel, but works on a different part of the
dataset.

ff Command queue: Here, each device receives kernels through this data structure. A
command queue orders the execution of kernels on the device.

GPU Programming with Python

244

ff Context: This is a group of devices. A context allows devices to receive kernels and
transfer data.

HOST

context

Kernels

Program

A()
B()
C()
D()

... ...

A() B() C() D()

Device 0 Device 1 Device 2 Device 3

PyOpenCL programming

The preceding figure shows how these data structures can work in a host application. Note
that a program can contain multiple functions to be executed on the device, and each kernel
encapsulates only a single function from the program.

How to do it…
In this example, we show you the basic steps to build a PyOpenCL program. The task here is to
execute the parallel sum of two vectors. In order to maintain a readable output, let's consider
two vectors each from the 100 elements. The resulting vector will be for each ith element,
which is the sum of the ith element vector_a and vector_b.

Of course, to be able to appreciate the parallel execution of this code, you can also increase
some orders whose magnitude is of the size of the vector_dimension input:

import numpy as np
import pyopencl as cl
import numpy.linalg as la

vector_dimension = 100

vector_a = np.random.randint(vector_dimension, size=vector_dimension)
vector_b = np.random.randint(vector_dimension, size=vector_dimension)

Chapter 6

245

platform = cl.get_platforms()[0]
device = platform.get_devices()[0]

context = cl.Context([device])
queue = cl.CommandQueue(context)

mf = cl.mem_flags
a_g = cl.Buffer(context, mf.READ_ONLY | mf.COPY_HOST_PTR,
hostbuf=vector_a)
b_g = cl.Buffer(context, mf.READ_ONLY | mf.COPY_HOST_PTR,
hostbuf=vector_b)

program = cl.Program(context, """
__kernel void vectorSum(__global const int *a_g, __global const int
*b_g, __global int *res_g) {
 int gid = get_global_id(0);
 res_g[gid] = a_g[gid] + b_g[gid];
}
""").build()

res_g = cl.Buffer(context, mf.WRITE_ONLY, vector_a.nbytes)
program.vectorSum(queue, vector_a.shape, None, a_g, b_g, res_g)

res_np = np.empty_like(vector_a)
cl.enqueue_copy(queue, res_np, res_g)

print ("PyOPENCL SUM OF TWO VECTORS")
print ("Platform Selected = %s" %platform.name)
print ("Device Selected = %s" %device.name)
print ("VECTOR LENGTH = %s" %vector_dimension)
print ("INPUT VECTOR A")
print vector_a
print ("INPUT VECTOR B")
print vector_b
print ("OUTPUT VECTOR RESULT A + B ")
print res_np

assert(la.norm(res_np - (vector_a + vector_b))) < 1e-5

The output from Command Prompt should be like this:

C:\Python CookBook\ Chapter 6 - GPU Programming with Python\Chapter 6 -
codes>python PyOpenCLParallellSum.py

GPU Programming with Python

246

Platform Selected = NVIDIA CUDA

Device Selected = GeForce GT 240

VECTOR LENGTH = 100

INPUT VECTOR A

[0 29 88 46 68 93 81 3 58 44 95 20 81 69 85 25 89 39 47 29 47 48 20 86
59 99 3 26 68 62 16 13 63 28 77 57 59 45 52 89 16 6 18 95 30 66 19 29
31 18 42 34 70 21 28 0 42 96 23 86 64 88 20 26 96 45 28 53 75 53 39 83
85 99 49 93 23 39 1 89 39 87 62 29 51 66 5 66 48 53 66 8 51 3 29 96
67 38 22 88]

INPUT VECTOR B

[98 43 16 28 63 1 83 18 6 58 47 86 59 29 60 68 19 51 37 46 99 27 4 94
5 22 3 96 18 84 29 34 27 31 37 94 13 89 3 90 57 85 66 63 8 74 21 18 34
93 17 26 9 88 38 28 14 68 88 90 18 6 40 30 70 93 75 0 45 86 15 10 29
84 47 74 22 72 69 33 81 31 45 62 81 66 69 14 71 96 91 51 35 4 63 36 28
65 10 41]

OUTPUT VECTOR RESULT A + B

[98 72 104 74 131 94 164 21 64 102 142 106 140 98 145 93 108 90

 84 75 146 75 24 180 64 121 6 122 86 146 45 47 90 59 114 151

 72 134 55 179 73 91 84 158 38 140 40 47 65 111 59 60 79 109

 66 28 56 164 111 176 82 94 60 56 166 138 103 53 120 139 54 93

 114 183 96 167 45 111 70 122 120 118 107 91 132 132 74 80 119 149

 157 59 86 7 92 132 95 103 32 129]

How it works…
In the first line of the code after the required module import, we defined the input vectors:

vector_dimension = 100
vector_a = np.random.randint(vector_dimension, size= vector_dimension)
vector_b = np.random.randint(vector_dimension, size= vector_dimension)

Each vector contains 100 integers items that are randomly selected thought the NumPy
function np.random.randint(max integer , size of the vector).

Then, we must select the device to run the kernel code. To do this, we must first select the
platform using the PyOpenCL's get_platform()statement:

 platform = cl.get_platforms()[0]

Chapter 6

247

This platform, as you can see from the output, corresponds to the NVIDIA CUDA platform.
Then, we must select the device using the platform's get_device() method:

 device = platform.get_devices()[0]

In the following code, the context and queue are defined. PyOpenCL provides the method
context (device selected) and queue (context selected):

 context = cl.Context([device])
 queue = cl.CommandQueue(context)

To perform the computation in the device, the input vector must be transferred to the device's
memory. So, two input buffers in the device memory must be created:

mf = cl.mem_flags
a_g = cl.Buffer(context, mf.READ_ONLY | mf.COPY_HOST_PTR,
hostbuf=vector_a)
b_g = cl.Buffer(context, mf.READ_ONLY | mf.COPY_HOST_PTR,
hostbuf=vector_b)

Also, we prepare the buffer for the resulting vector:

res_g = cl.Buffer(context, mf.WRITE_ONLY, vector_a.nbytes)

Finally, the core of the script, that is, the kernel code is defined inside program:

program = cl.Program(context, """
__kernel void vectorSum(__global const int *a_g, __global const int
*b_g, __global int *res_g) {
 int gid = get_global_id(0);
 res_g[gid] = a_g[gid] + b_g[gid];
}
""").build()

The kernel's name is vectorSum, while the parameter list defines the data types of the input
arguments (vectors of integers) and output data type (a vector of the integer).

In the body of the kernel function, the sum of two vectors is defined as follows:

ff Initialize the vector index: int gid = get_global_id(0)

ff Sum up the vector's components: res_g[gid] = a_g[gid] + b_g[gid];

In OpenCL and PyOpenCL, buffers are attached to a context and are only moved to a device
once the buffer is used on that device. Finally, we execute vectorSum in the device:

 program.vectorSum(queue, vector_a.shape, None, a_g, b_g, res_g)

GPU Programming with Python

248

To visualize the results, an empty vector is built:

 res_np = np.empty_like(vector_a)

Then, the result is copied into this vector:

 cl.enqueue_copy(queue, res_np, res_g)

Finally, the results are displayed:

print ("VECTOR LENGTH = %s" %vector_dimension)
print ("INPUT VECTOR A")
print vector_a
print ("INPUT VECTOR B")
print vector_b
print ("OUTPUT VECTOR RESULT A + B ")
print res_np

To check the result, we use the assert statement. It tests the result and triggers an error if
the condition is false:

assert(la.norm(res_np - (vector_a + vector_b))) < 1e-5

Evaluating element-wise expressions with
PyOpenCl

Similar to PyCUDA, PyOpenCL provides the functionality in the pyopencl.elementwise
class that allows us to evaluate the complicated expressions in a single computational pass.
The method that realized this is:

 ElementwiseKernel(context, argument, operation, name,",",",
 optional_parameters)

Here:

ff context: This is the device or the group of devices on which the element-wise
operation will be executed

ff argument: This is a C-like argument list of all the parameters involved in the
computation

ff operation: This is a string that represents the operation that is to be performed
on the argument list

ff name: This is the kernel name associated with ElementwiseKernel

ff optional_parameters: These are not important for this recipe.

Chapter 6

249

How to do it…
In this example, we will again consider the task of adding two integer vectors of 100 elements.
The achievement, of course, changes because we use the ElementwiseKernel class, as
shown:

import pyopencl as cl
import pyopencl.array as cl_array
import numpy as np

context = cl.create_some_context()
queue = cl.CommandQueue(context)

vector_dimension = 100
vector_a = cl_array.to_device(queue, np.random.randint(vector_
dimension, size=vector_dimension))
vector_b = cl_array.to_device(queue, np.random.randint(vector_
dimension, size=vector_dimension))
result_vector = cl_array.empty_like(vector_a)

elementwiseSum = cl.elementwise.ElementwiseKernel(context, "int *a,
int *b, int *c", "c[i] = a[i] + b[i]", "sum")
elementwiseSum(vector_a, vector_b, result_vector)

print ("PyOpenCL ELEMENTWISE SUM OF TWO VECTORS")
print ("VECTOR LENGTH = %s" %vector_dimension)
print ("INPUT VECTOR A")
print vector_a
print ("INPUT VECTOR B")
print vector_b
print ("OUTPUT VECTOR RESULT A + B ")
print result_vector

The output of this code is as follows:

C:\Python CookBook\Chapter 6 - GPU Programming with Python\>python
PyOpenCLElementwise.py

Choose platform:

[0] <pyopencl.Platform 'NVIDIA CUDA' at 0x2cc6c40>

[1] <pyopencl.Platform 'Intel(R) OpenCL' at 0x3cf440>

Choice [0]:0

Set the environment variable PYOPENCL_CTX='0' to avoid being asked again.

GPU Programming with Python

250

PyOpenCL ELEMENTWISE SUM OF TWO VECTORS

VECTOR LENGTH = 100

INPUT VECTOR A

[70 95 47 53 71 52 15 10 95 5 76 40 55 87 7 18 44 72 2 42 47 86 58 87
64 79 44 94 5 54 92 21 60 67 43 92 38 49 97 14 17 35 87 94 3 17 87 24
50 43 39 71 84 7 64 60 29 74 65 82 42 35 96 80 94 57 21 56 94 8 3 94
30 64 44 34 79 5 88 80 98 88 5 2 77 57 7 93 49 42 56 19 81 36 19 24
27 18 1 40]

INPUT VECTOR B

[82 32 72 9 29 29 92 2 20 44 31 91 63 97 86 37 39 41 19 78 60 30 21 69
29 38 56 49 97 18 44 84 27 73 73 14 67 43 17 58 81 52 89 84 80 96 58 80
20 91 20 61 92 46 34 98 21 82 52 34 81 45 35 28 23 59 21 89 47 75 49 43
92 91 84 59 35 61 42 12 69 15 98 85 12 36 64 89 76 29 8 81 62 5 58 13
46 82 12 66]

OUTPUT VECTOR RESULT A + B

[152 127 119 62 100 81 107 12 115 49 107 131 118 184 93 55 83 113

 21 120 107 116 79 156 93 117 100 143 102 72 136 105 87 140 116 106

 105 92 114 72 98 87 176 178 83 113 145 104 70 134 59 132 176 53

 98 158 50 156 117 116 123 80 131 108 117 116 42 145 141 83 52 137

 122 155 128 93 114 66 130 92 167 103 103 87 89 93 71 182 125 71

 64 100 143 41 77 37 73 100 13 106]

How it works…
In the first line of the script, we import all the requested modules:

import pyopencl as cl
import pyopencl.array as cl_array
import numpy

To initialize the context, we use the cl.create_some_context() method. It asks the user
which context must be used to perform the calculation:

Choose platform:
[0] <pyopencl.Platform 'NVIDIA CUDA' at 0x2cc6c40>
[1] <pyopencl.Platform 'Intel(R) OpenCL' at 0x3cf440>

Then, we instantiate the queue that will receive ElementwiseKernel:

queue = cl.CommandQueue(context)

Chapter 6

251

The input vectors and the result vector are instantiated:

vector_dimension = 100
vector_a = cl_array.to_device(queue, np.random.randint(vector_
dimension, size=vector_dimension))
vector_b = cl_array.to_device(queue, np.random.randint(vector_
dimension, size=vector_dimension))
result_vector = cl_array.empty_like(vector_a)

The input vectors vector_a and vector_b are integer vectors of random values that are
obtained using the NumPy's random.radint function. The inputs vectors are defined and
copied into the device using the PyOpenCL statement:

cl.array_to_device(queue,array)

Finally, the ElementwiseKernel object is created:

elementwiseSum = cl.elementwise.ElementwiseKernel(context, "int *a,
int *b, int *c", "c[i] = a[i] + b[i]", "sum")

In this code:

ff All the arguments are in the form of a string formatted as a C argument list (they are
all integers)

ff A snippet of C carries out the operation, which is the sum of the vector components

ff The function's name is used to compile the kernel ^s

Then, we can call the elementwiseSum function with the arguments defined previously:

elementwiseSum(vector_a, vector_b, result_vector)

The example ends by printing the input vectors and the result is obtained:

print vector_a
print vector_b
print result_vector

Testing your GPU application with PyOpenCL
In this chapter, we comparatively tested the performance between a CPU and GPU. Before you
begin the study of the performance of algorithms, it is important to keep in mind the platform
of execution on which the tests were conducted. In fact, the specific characteristics of these
systems interfere with the computational time and they represent an aspect of primary
importance.

GPU Programming with Python

252

To perform the tests, we used the following machines

ff GPU: GeForce GT 240

ff CPU: Intel Core2 Duo 2.33 Ghz

ff RAM: DDR2 4 Gb

How to do it…
In this test, the computation time of a simple mathematical operation, that is, the sum of two
vectors with elements expressed in a floating point will be evaluated and compared. To make
a comparison, the same operation was implemented in two separate functions.

The first one uses only the CPU, while the second is written using PyOpenCL and makes use
of the GPU for calculation. The test is performed on vectors of a dimension equal to 10,000
elements.

The code for this is as follows:

from time import time # Import time tools

import pyopencl as cl
import numpy as np
import PyOpeClDeviceInfo as device_info
import numpy.linalg as la

#input vectors
a = np.random.rand(10000).astype(np.float32)
b = np.random.rand(10000).astype(np.float32)

def test_cpu_vector_sum(a, b):
 c_cpu = np.empty_like(a)
 cpu_start_time = time()
 for i in range(10000):
 for j in range(10000):
 c_cpu[i] = a[i] + b[i]
 cpu_end_time = time()
 print("CPU Time: {0} s".format(cpu_end_time - cpu_start_time))
 return c_cpu

def test_gpu_vector_sum(a, b):
 #define the PyOpenCL Context
 platform = cl.get_platforms()[0]
 device = platform.get_devices()[0]
 context = cl.Context([device])

Chapter 6

253

 queue = cl.CommandQueue(context, \
 properties=cl.command_queue_properties.PROFILING_
ENABLE)

#prepare the data structure
 a_buffer = cl.Buffer\
 (context, \
 cl.mem_flags.READ_ONLY \
 | cl.mem_flags.COPY_HOST_PTR, hostbuf=a)
 b_buffer = cl.Buffer\
 (context, \
 cl.mem_flags.READ_ONLY \
 | cl.mem_flags.COPY_HOST_PTR, hostbuf=b)
 c_buffer = cl.Buffer\
 (context, \
 cl.mem_flags.WRITE_ONLY, b.nbytes)
 program = cl.Program(context, """
 __kernel void sum(__global const float *a,
 __global const float *b,
 __global float *c)
 {
 int i = get_global_id(0);
 int j;
 for(j = 0; j < 10000; j++)
 {
 c[i] = a[i] + b[i];
 }
 }""").build()
 #start the gpu test
 gpu_start_time = time()
 event = program.sum(queue, a.shape, None, \
 a_buffer, b_buffer, c_buffer)
 event.wait()
 elapsed = 1e-9*(event.profile.end - event.profile.start)
 print("GPU Kernel evaluation Time: {0} s".format(elapsed))
 c_gpu = np.empty_like(a)
 cl.enqueue_read_buffer(queue, c_buffer, c_gpu).wait()
 gpu_end_time = time()
 print("GPU Time: {0} s".format(gpu_end_time - gpu_start_time))
 return c_gpu

#start the test
if __name__ == "__main__":
 #print the device info

GPU Programming with Python

254

 device_info.print_device_info()
 #call the test on the cpu
 cpu_result = test_cpu_vector_sum(a, b)
 #call the test on the gpu
 gpu_result = test_gpu_vector_sum(a, b)
 #
 assert (la.norm(cpu_result - gpu_result)) < 1e-5

The output of the test is as follows, where the device information with the execution time is
printed out:

C:\Python Cook\Chapter 6 - GPU Programming with Python\Chapter 6 -
codes>python PyOpenCLTestApplication.py

==

OpenCL Platforms and Devices

==

Platform - Name: NVIDIA CUDA

Platform - Vendor: NVIDIA Corporation

Platform - Version: OpenCL 1.1 CUDA 6.0.1

Platform - Profile: FULL_PROFILE

 --

 Device - Name: GeForce GT 240

 Device - Type: GPU

 Device - Max Clock Speed: 1340 Mhz

 Device - Compute Units: 12

 Device - Local Memory: 16 KB

 Device - Constant Memory: 64 KB

 Device - Global Memory: 1 GB

 Device - Max Buffer/Image Size: 256 MB

 Device - Max Work Group Size: 512

==

Platform - Name: Intel(R) OpenCL

Platform - Vendor: Intel(R) Corporation

Platform - Version: OpenCL 1.2

Platform - Profile: FULL_PROFILE

 --

 Device - Name: Intel(R) Core(TM)2 Duo CPU E6550 @ 2.33GHz

 Device - Type: CPU

Chapter 6

255

 Device - Max Clock Speed: 2330 Mhz

 Device - Compute Units: 2

 Device - Local Memory: 32 KB

 Device - Constant Memory: 128 KB

 Device - Global Memory: 2 GB

 Device - Max Buffer/Image Size: 512 MB

 Device - Max Work Group Size: 8192

CPU Time: 71.9769999981 s

GPU Kernel Time: 0.075756608 s

GPU Time: 0.0809998512268 s

Even if the test is not computationally expansive, it provides useful indications of the potential
of a GPU card.

How it works…
As explained in the preceding section, the test consists of two parts. The code that runs on
the CPU and the code that runs on the GPU. Both were taken to the execution time.

Regarding the test on the CPU, the test_cpu_vector_sum function has been implemented.
It consists of two loops on 10,000 vectors elements:

 cpu_start_time = time()
 for i in range(10000):
 for j in range(10000):
 c_cpu[i] = a[i] + b[i]
 cpu_end_time = time()

The sum operation of the ith vector components is executed 1,000,000,000 times, and it will
be computationally expensive.

The total CPU time will have the following difference:

 CPU Time = cpu_end_time - cpu_start_time

To test the GPU time, we implemented the regular definition schema of an application for
PyOpenCL:

ff We established the definition of the device and context

ff We set up the queue for execution

GPU Programming with Python

256

ff We created memory areas to perform the computation on the device (three buffers
defined as a_buffer, b_buffer, c_buffer)

ff We built the kernel

ff We evaluated the kernel call and GPU time:

gpu_start_time = time()
 event = program.sum(queue, a.shape, None, \
 a_buffer, b_buffer, c_buffer)

 cl.enqueue_read_buffer(queue, c_buffer, c_gpu).wait()
 gpu_end_time = time()

Here, GPU Time = gpu_end_time - gpu_start_time.

Finally, in the main program we call the testing function and print_device_info() that we
defined previously:

if __name__ == "__main__":
 device_info.print_device_info()
 cpu_result = test_cpu_vector_sum(a, b)
 gpu_result = test_gpu_vector_sum(a, b)
 assert (la.norm(cpu_result - gpu_result)) < 1e-5

To check the result, we used the assert statement that verifies the result and triggers an
error if the condition is false.

257

Index
A
Advanced Message Queuing Protocol

(AMQP) 153
agglomeration 17
Alltoall

about 116
types 116
used, for collective communication 116-118

Amdahl's law 20
Anaconda Python distribution

URL 230
Asyncio

coroutines, handling with 138-143
used, for dealing Futures 147-150
used, for managing event loop 134-138
used, for tasks manipulation 143-146

B
Basic Linear Algebra Subprograms (BLAS)

library 234
broadcast

used, for collective communication 108-110

C
cache only memory access (COMA) 9
Celery

about 152
reference link 156
used, for creating task 154-158
used, for distributing task 152-154

client-server application
developing, with Pyro4 177-183

cluster of workstations
about 12
fail-over cluster 12
high-performance computing cluster 12
load balancing cluster 12

collective communication
about 108
with Alltoall 116-118
with broadcast 108-110
with gather function 114, 115
with scatter 110-113

communication
optimizing 120-125

Compute Unified Device Architecture
(CUDA)

about 201
URL 204

concurrent.futures Python modules
process pool, dealing with 129
thread pool, dealing with 129
using 128-133

coroutines
about 134
handling, with Asyncio 138-143

CPython 26
cuBLAS library

about 234
URL 239

cuFFT library 235
cuRAND library 235
current thread

determining 37-39
cuSPArse library 235

258

D
data parallel model 16
data structures, host application

command queue 243
context 244
device 243
kernel 243
program 243

deadlock problems
avoiding 104-107

Disco
about 190
URL 191
used, for MapReduce 190-195

distributed computing
about 151
problems 152

distributed memory
about 10
cluster of workstations 12
features 11
heterogeneous architecture 13

Distributed Shared Memory Systems (DSM) 9
dynamic mapping

about 18
decentralize 19
hierarchical manager/worker 19
manager/worker 18

E
element-wise expressions

evaluating, with PyCUDA 220-224
evaluating, with PyOpenCL 248-251

Erlang
URL 153

event
used, for thread synchronization 55-58

event loop
about 134
managing, with Asyncio 134-138

F
fail-over cluster 12
Fast Fourier Transform (FFT) 235

Field Programmable Gate Array (FPGA) 243
finite state automaton (FSA) 139
Flower

URL 153
Futures

about 134, 158
dealing, with Asyncio 147-150

G
gather function

used, for collective communication 114, 115
GEneral Matrix Multiply (GEMM) 235
general-purpose computing on graphics

processing units (GP-GPU) 201
Global Interpreter Lock (GIL) 29
GPU-accelerated libraries

cuBLAS 234
cuFFT 235
cuRAND 235
cuSPArse 235
URL 239
using, with NumbaPro 234-239

GPUArray
used, for kernel invocations 218-220

graphics processing unit (GPU)
about 200
application, testing with PyOpenCL 251-256
programming, with NumbaPro 229-233

gufunc object
about 229
URL 229

Gustafson's law 21

H
heterogeneous architecture 13
high-performance computing cluster 12
hybrid programming model 202

I
IDLE

URL 22
Integrated Development Environment

(IDE) 22

259

J
Just-in-time (JIT) compiler 202

K
kernel

about 203
invoking, with GPUArray 218-220

L
load balancing cluster 12
lock

used, for thread synchronization 41-45

M
map functions

handling, with SCOOP 163-166
mapping

about 18
dynamic mapping 18

MapReduce
Map 190
operation, performing with PyCUDA 225-228
Reduce 190
used, with Disco 190-195

memory access
cache only memory access (COMA) 9
non-uniform memory access (NUMA) 9
no remote memory access (NORMA) 9
uniform memory access (UMA) 9

memory architecture
about 3
multiple instruction, multiple data (MIMD) 6
multiple instruction, single data (MISD) 5
single instruction, multiple data (SIMD) 5
single instruction, single data (SISD) 3, 4

memory organization
about 6, 7
distributed memory 10, 11
shared memory 8, 9

message passing model 15
mpi4py Python module

URL 98
using 97-100

multithread applications
performance, evaluating 66-72

multithreaded programming 34
multithread model 15

N
non-uniform memory access (NUMA) 9
no remote memory access (NORMA) 9
NumbaPro

about 229
GPU-accelerated libraries, using 234-239
used, for GPU programming 229-233

NVIDIA CUDA Development Driver
URL 204

NVIDIA GPU Computing SDK
URL 204

O
objects

chaining, with Pyro4 171-177
exchanging, between process 84
exchanging, pipes used 88-90
exchanging, queue used 84-87

ØMQ package 158
Open Computing Language (OpenCL) 240
Open Telecom Platform (OTP) 153

P
parallel computing

memory architecture 3
parallel program

agglomeration 17
designing 16
mapping 18
performance, evaluating 19
task assignment 17
task decomposition 17

parallel programming models
about 14
data parallel model 16
message passing model 15
multithread model 15
shared memory model 14

260

parallel program, performance indexes
Amdahl's law 20
efficiency 20
Gustafson's law 21
scaling 20
speedup 19

pip
URL 99

pipes
used, for exchanging objects 88-90

point to point communication
about 101
enabling 101-104

process
about 26
naming 77-79
objects, exchanging between 84
running, in background 79, 80
spawning 75, 76
state, managing between 93-95
synchronizing 90-92
terminating 81, 82
using, in subclass 82, 83
working with, in Python 27-29

process pool
about 129
using 95-97

PyCharm
URL 22

PyCSP
URL 184
used, for communicating sequential

processes 184-189
PyCUDA

about 201
application, building 207-212
element-wise expressions,

evaluating 220-224
hybrid programming model 202
installing 203, 204
kernel 203
MapReduce operation, performing 225-228
memory model 212, 213
memory model, example 213-217
reference link 206
threads 203

URL 203
using 201-206

PyCUDA, memory model
constant memory 212
global memory 212
registers 212
shared memory 212

PyOpenCL
about 240
application, building 243-248
element-wise expressions,

evaluating 248-251
used, for testing GPU application 251-256
using 240-243

Python
about 21
examples 23-25
features 21
for parallel programming 26
process, working with 27-29
threads, working with 29-32
URL 22

Python bytecode 26
Python Remote Objects (Pyro4)

about 167
example 168-171
installing 168
URL 168
used, for chaining objects 171-177
used, for developing client-server

application 177-183

Q
queue

used, for exchanging objects 84-87
used, for thread synchronization 62-66

R
RabbitMQ

URL 153
reduction operation

defining 118-120
Remote Method Invocation (RMI)

about 167
with Pyro4 167

261

remote procedure call (RPC) 167
Remote Python Call (RPyC)

about 195
features 195
URL 196
used, for remote procedure call

(RPC) 195-197
RLock

used, for thread synchronization 45-47

S
Scalable Concurrent Operations in Python

(SCOOP)
about 158
URL 159
used, for handling map functions 163-166
used, for scientific computing 158-162

scatter
used, for collective communication 110-113

scientific computing
with SCOOP 158-162

semaphores
used, for thread synchronization 48-51

sequential processes
communicating, with PyCSP 184-189

shaders 200
shared memory

about 8, 9
features 9
memory access 9

shared memory model 14
single instruction, multiple data

(SIMD) 5, 201
single instruction, single data (SISD)

about 3, 4
central memory unit 4
CPU 4
I/O system 4

Streaming Multiprocessor (SM) 200, 210
Stream Processors (SP) 201
subclass

process, using 82, 83
thread, using 39-41

Sublime Text
URL 22

symmetric multiprocessor (SMP) 9

T
task

creating, Celery used 154-157
distributing, Celery used 152-154
manipulating, with Asyncio 143-146

task decomposition
about 17
domain decomposition 17
functional decomposition 17

thread
about 26, 34, 203
defining 35-37
using, in subclass 39-41
working with, in Python 29-32

threading module
components 35
using 35

thread pool 129
thread synchronization

with condition 52-55
with event 55-58
with lock 41-45
with queue 62-66
with RLock 45-47
with semaphores 48-51

U
uniform memory access (UMA) 9

W
warps 210
warp scheduler 210
Win32 OpenCL driver

URL 240
with statement

using 59-61

Thank you for buying

Python Parallel Programming Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information,
please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt open source brand, home
to books published on software built around open source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's open source Royalty Scheme, by which Packt gives a royalty to each open source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Parallel Programming with
Python
ISBN: 978-1-78328-839-7 Paperback: 128 pages

Develop efficient parallel systems using the robust
Python environment

1.	 Demonstrates the concepts of Python parallel
programming.

2.	 Boosts your Python computing capabilities.

3.	 Contains easy-to-understand explanations and
plenty of examples.

Python High Performance
Programming
ISBN: 978-1-78328-845-8 Paperback: 108 pages

Boost the performance of your Python programs using
advanced techniques

1.	 Identify the bottlenecks in your applications and
solve them using the best profiling techniques.

2.	 Write efficient numerical code in NumPy and
Cython.

3.	 Adapt your programs to run on multiple processors
with parallel programming.

Please check www.PacktPub.com for information on our titles

Python Testing Cookbook
ISBN: 978-1-84951-466-8 Paperback: 364 pages

Over 70 simple but incredibly effective recipes for taking
control of automated testing using powerful Python
testing tools

1.	 Learn to write tests at every level using a variety of
Python testing tools.

2.	 The first book to include detailed screenshots and
recipes for using Jenkins continuous integration
server (formerly known as Hudson).

3.	 Explore innovative ways to introduce automated
testing to legacy systems.

4.	 Written by Greg L. Turnquist – senior software
engineer and author of Spring Python 1.1.

Mastering Python [Video]
ISBN: 978-1-78398-896-9 Duration: 02:35 hours

Get to grips with Python best practices and advanced
tools to design, distribute, and test your programs

1.	 Explore the immense Python libraries to write
efficient, reusable code.

2.	 Create adaptable programs that run on multiple
processors with parallel programming.

3.	 Become a Python expert with the help of detailed
discussions, illustrated with concrete examples.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Parallel Computing
and Python
	Introduction
	The parallel computing memory architecture
	Memory organization
	Parallel programming models
	How to design a parallel program
	How to evaluate the performance of a parallel program
	Introducing Python
	Python in a parallel world
	Introducing processes and threads
	Start working with processes in Python
	Start working with threads in Python

	Chapter 2: Thread-based Parallelism
	Introduction
	Using the Python threading module
	How to define a thread
	How to determine the current thread
	How to use a thread in a subclass
	Thread synchronization with Lock and RLock
	Thread synchronization with RLock
	Thread synchronization with semaphores
	Thread synchronization with a condition
	Threads synchronization with an event
	Using the with statement
	Thread communication using a queue
	Evaluating the performance of multithread applications

	Chapter 3: Process-based Parallelism
	Introduction
	How to spawn a process
	How to name a process
	How to run a process in the background
	How to kill a process
	How to use process in a subclass
	How to exchange objects between processes
	How to synchronize processes
	How to manage a state between processes
	How to use a process pool
	Using the mpi4py Python module
	Point-to-point communication
	Avoiding deadlock problems
	Collective communication using broadcast
	Collective communication using scatter
	Collective communication using gather
	Collective communication using Alltoall
	The reduction operation
	How to optimize the communication

	Chapter 4: Asynchronous Programming
	Introduction
	Using the concurrent.futures Python modules
	Event loop management with Asyncio
	Handling coroutines with Asyncio
	Task manipulation with Asyncio
	Dealing with Asyncio and Futures

	Chapter 5: Distributed Python
	Introduction
	Using Celery to distribute tasks
	How to create a task with Celery
	Scientific computing with SCOOP
	Handling map functions with SCOOP
	Remote Method Invocation with Pyro4
	Chaining objects with Pyro4
	Developing a client-server application with Pyro4
	Communicating sequential processes with PyCSP
	Using MapReduce with Disco
	A remote procedure call with RPyC

	Chapter 6: GPU Programming
with Python
	Introduction
	Using the PyCUDA module
	How to build a PyCUDA application
	Understanding the PyCuda memory model with matrix manipulation
	Kernel invocations with GPUArray
	Evaluating element-wise expressions with PyCUDA
	The MapReduce operation with PyCuda
	GPU programming with NumbaPro
	Using GPU-accelerated libraries with NumbaPro
	Using the PyOpenCL module
	How to build a PyOpenCL application
	Evaluating element-wise expressions with PyOpenCl
	Testing your GPU application with PyOpenCL

	Index

